- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration
摘要: The hardware implementation of neuromorphic computing has attracted growing interest as a promising candidate for confronting the bottleneck of traditional von Neumann computers. However, most previous reports are focused on emulating the synaptic behaviors by a mono-mode using an electric-driving or photo-driving approach, resulting in a big challenge to synchronously handle the natural photoelectric information. Herein, we report a multifunctional photoelectronic hybrid-integrated synaptic device based on the electric-double-layer (EDL) MoS2 phototransistor. Interestingly, the electric MoS2 synapse exhibits a potentiation filtering effect, while the photonic counterpart can implement both potentiation and depression filtering effects. Most importantly, for the first time, photoelectronic and spatio-temporal four-dimensional (4D) hybrid integration was successfully demonstrated by the synergic interplay between photonic and electric stimuli within a single MoS2 synapse. An energy band model is proposed to further understand such a photoelectronic and spatio-temporal 4D hybrid coupling mechanism. These results might provide an alternative solution for the size-scaling and intellectualization campaign of the post-Moore era, and for more sophisticated photoelectronic hybrid computing in the emerging neuromorphic nanoelectronics.
关键词: neuromorphic computing,electric-double-layer,synaptic device,MoS2 phototransistor,photoelectronic hybrid integration
更新于2025-11-25 10:30:42
-
Enhanced finite size and interface mixing effects in iridium manganese ultra thin films
摘要: The finite size and temperature dependent properties of antiferromagnets are of critical importance to a wide range of spintronic and neuromorphic computing devices. Here we present atomistic simulations of IrMn, one of the most technologically important antiferromagnets, in both the ordered (L12) and disordered (γ) phases. We have found that antiferromagnetic IrMn3 films show a stronger finite size dependence of the Néel temperature than an equivalent ferromagnet due to the existence of spin frustration. We also find that the disordered γ-IrMn3 phase shows a dramatic reduction in the Néel temperature to less than room temperature for films less than 1 nm thick. Interfacial intermixing of the IrMn3 with a non-magnetic Cu capping layer further reduces the Néel temperature for a given film thickness, with a stronger influence on the disordered γ-IrMn3 phase compared to the ordered L12-IrMn3 phase. Our results suggest a larger antiferromagnetic film thickness is required for devices operating at or above room temperature compared to an equivalent ferromagnet, particularly for sputtered films with a high degree of interfacial intermixing.
关键词: Néel temperature,antiferromagnets,neuromorphic computing,IrMn,spintronic devices,finite size effects
更新于2025-09-23 15:21:21
-
[IEEE 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) - Dubrovnik, Croatia (2019.9.23-2019.9.25)] 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) - Acknowledgements
摘要: Phase-change materials and devices have received much attention as a potential route to the realization of various types of unconventional computing paradigms. In this letter, we present non-von Neumann arithmetic processing that exploits the accumulative property of phase-change memory (PCM) cells. Using PCM cells with integrated FET access devices, we perform a detailed study of accumulation-based computation. We also demonstrate efficient factorization using PCM cells, a technique that could pave the way for massively parallelized computations.
关键词: neuromorphic computing,Phase-change materials,non-von Neumann,arithmetic computing
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE Conference on Antenna Measurements & Applications (CAMA) - Kuta, Bali, Indonesia (2019.10.23-2019.10.25)] 2019 IEEE Conference on Antenna Measurements & Applications (CAMA) - 60GHz Substrate Integrated Waveguide Balun
摘要: Phase-change materials and devices have received much attention as a potential route to the realization of various types of unconventional computing paradigms. In this letter, we present non-von Neumann arithmetic processing that exploits the accumulative property of phase-change memory (PCM) cells. Using PCM cells with integrated FET access devices, we perform a detailed study of accumulation-based computation. We also demonstrate efficient factorization using PCM cells, a technique that could pave the way for massively parallelized computations.
关键词: neuromorphic computing,non-von Neumann,Phase-change materials,arithmetic computing
更新于2025-09-23 15:19:57
-
[IEEE 2019 IEEE SENSORS - Montreal, QC, Canada (2019.10.27-2019.10.30)] 2019 IEEE SENSORS - A 2x2 Pixel Array Camera based on a Backside Illuminated Ge-on-Si Photodetector
摘要: Phase-change materials and devices have received much attention as a potential route to the realization of various types of unconventional computing paradigms. In this letter, we present non-von Neumann arithmetic processing that exploits the accumulative property of phase-change memory (PCM) cells. Using PCM cells with integrated FET access devices, we perform a detailed study of accumulation-based computation. We also demonstrate efficient factorization using PCM cells, a technique that could pave the way for massively parallelized computations.
关键词: neuromorphic computing,non-von Neumann,Phase-change materials,arithmetic computing
更新于2025-09-23 15:19:57
-
[IEEE 2019 Workshop on Recent Advances in Photonics (WRAP) - Guwahati, India (2019.12.13-2019.12.14)] 2019 Workshop on Recent Advances in Photonics (WRAP) - Self-Focusing of Quadruple Gaussian Laser Beam in Relativistic Plasma using Moment Theory Approach
摘要: Phase-change materials and devices have received much attention as a potential route to the realization of various types of unconventional computing paradigms. In this letter, we present non-von Neumann arithmetic processing that exploits the accumulative property of phase-change memory (PCM) cells. Using PCM cells with integrated FET access devices, we perform a detailed study of accumulation-based computation. We also demonstrate efficient factorization using PCM cells, a technique that could pave the way for massively parallelized computations.
关键词: neuromorphic computing,Phase-change materials,non-von Neumann,arithmetic computing
更新于2025-09-19 17:13:59
-
Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing
摘要: We report an artificial optoelectronic synapse based on a copper-phthalocyanine (CuPc) and para-sexiphenyl (p-6P) heterojunction structure. This device features stable conductance states and their linear distribution in long-term potentiation (LTP) characteristic curve formed by continuous input light pulses. These superior synaptic characteristics originate from the fact that the number of photo-holes moving into the CuPc channel and photo-electrons being trapped at the p-6P/dielectric interface is constant at every light pulse. A single-layer neural network is theoretically formed with these optoelectronic synaptic devices and its feasibility is studied in terms of training/recognition tasks of the Modified National Institute of Standards and Technology digit image patterns. Owing to the excellent LTP characteristic and through the use of a unidirectional update method, its maximum recognition rate is as high as 78% despite the use of a single-layer network. This study is expected to provide a foundation for future studies on optoelectronic synaptic devices toward the implementation of complex artificial neural networks.
关键词: Solar-stimulated optoelectronic synapse,Neuromorphic computing,Band engineering,Pattern recognition,Organic heterojunction
更新于2025-09-19 17:13:59
-
2D photonic memristor beyond graphene: progress and prospects
摘要: Photonic computing and neuromorphic computing are attracting tremendous interests in breaking the memory wall of traditional von Neumann architecture. Photonic memristors equipped with light sensing, data storage, and information processing capabilities are important building blocks of optical neural network. In the recent years, two-dimensional materials (2DMs) have been widely investigated for photonic memristor applications, which offer additional advantages in geometry scaling and distinct applications in terms of wide detectable spectrum range and abundant structural designs. Herein, the recent progress made toward the exploitation of 2DMs beyond graphene for photonic memristors applications are reviewed, as well as their application in photonic synapse and pattern recognition. Different materials and device structures are discussed in terms of their light tuneable memory behavior and underlying resistive switching mechanism. Following the discussion and classification on the device performances and mechanisms, the challenges facing this rapidly progressing research field are discussed, and routes to realize commercially viable 2DMs photonic memristors are proposed.
关键词: neuromorphic computing,photonic synapse,photonic memristor
更新于2025-09-19 17:13:59
-
Molybdenum Disulfide Nanosheet/Quantum Dot Dynamic Memristive Structure Driven by Photoinduced Phase Transition
摘要: MoS2 2D nanosheets (NS) with intercalated 0D quantum dots (QDs) represent promising structures for creating low-dimensional (LD) resistive memory devices. Nonvolatile memristors based 2D materials demonstrate low power consumption and ultrahigh density. Here, the observation of a photoinduced phase transition in the 2D NS/0D QDs MoS2 structure providing dynamic resistive memory is reported. The resistive switching of the MoS2 NS/QD structure is observed in an electric field and can be controlled through local QD excitations. Photoexcitation of the LD structure at different laser power densities leads to a reversible MoS2 2H-1T phase transition and demonstrates the potential of the LD structure for implementing a new dynamic ultrafast photoresistive memory. The dynamic LD photomemristive structure is attractive for real-time pattern recognition and photoconfiguration of artificial neural networks in a wide spectral range of sensitivity provided by QDs.
关键词: neuromorphic computing,photoinduced phase transition,2D crystals and QDs,dynamic photomemristors,liquid phase exfoliation
更新于2025-09-19 17:13:59
-
Origin of Current‐Controlled Negative Differential Resistance Modes and the Emergence of Composite Characteristics with High Complexity
摘要: Current-controlled negative differential resistance has significant potential as a fundamental building block in brain-inspired neuromorphic computing. However, achieving the desired negative differential resistance characteristics, which is crucial for practical implementation, remains challenging due to a lack of consensus on the underlying mechanism and design criteria. Here, a material-independent model of current-controlled negative differential resistance is reported to explain a broad range of characteristics, including the origin of the discontinuous snap-back response observed in many transition metal oxides. This is achieved by explicitly accounting for a non-uniform current distribution in the oxide film and its impact on the effective circuit of the device rather than a material-specific phase transition. The predictions of the model are then compared with experimental observations to show that the continuous S-type and discontinuous snap-back characteristics serve as fundamental building blocks for composite behavior with higher complexity. Finally, the potential of our approach is demonstrated for predicting and engineering unconventional compound behavior with novel functionality for emerging electronic and neuromorphic computing applications.
关键词: negative differential resistance,neuromorphic computing,threshold switching,nonlinear transport,nanoelectronics
更新于2025-09-19 17:13:59