- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose
摘要: The combination of electrocatalyst with semiconductor light-absorber is of great importance to increase the efficiency of photoelectrochemical (PEC) glucose detection. Here, in-situ and synchronous fabrication of Ni-based electrocatalyst (NiEC) and CdS semiconductor in laser-induced graphene (LIG) on indium?tin oxide glass is demonstrated via a one-step laser-induced solid phase transition. A series of component and structural characterizations suggest that the laser-induced NiEC uniformly disperses in the hybrid nanocomposite and exists mainly in the form of Ni0 and NiO state. Moreover, both electrochemical and PEC investigations confirm that the as-prepared hybrid photoelectrode exhibits excellent photoelectrocatalytic ability towards glucose, which is not only attributed to the strong synergistic interaction between CdS and NiEC, but also benefited from the high conductivity as well as 3D macroporous configuration of the simultaneously formed LIG, providing the key factor to achieve sensitive non-enzymatic PEC glucose sensors. Therefore, the laser-induced hybrid photoelectrode is then applied to the PEC detection of glucose, and a low detection limit of 0.4 μM is obtained with good stability, reproducibility, and selectivity. This study provides a promising paradigm for the facile and binder-free fabrication of electrocatalyst?semiconductor?graphene hybrid photoelectrode, which will find potential applications in sensitive PEC biosensing for a broad range of analytes.
关键词: nickel electrocatalyst,hybrid nanocomposite,cadmium sulfide,photoelectrochemical sensing,laser-induced graphene,glucose
更新于2025-09-23 15:19:57