修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

23 条数据
?? 中文(中国)
  • Facile and highly effective synthesis of nitrogen-doped graphene quantum dots as a fluorescent sensing probe for Cu2+ detection

    摘要: Nitrogen-doped graphene quantum dots (N-GQDs) with high blue fluorescence efficiency were synthesized by the hydrothermal method from p-Phenylenediamine and p-Coumaric acid. The N-GQDs possess several superiorities, most significantly in excellent solubility and superior photostability. Besides, the as-prepared N-GQDs exhibit a uniform size distribution with a diameter of about 3.8±0.5 nm. After dispersing the N-GQDs in water, the formed aqueous solution still presents a stable and homogeneous phase even after 2 months at room temperature. The N-GQD dispersion was further utilized as sensing probes for the selective detection of copper ions (Cu2+), which is realized by the photoluminescence (PL) quenching of N-GQDs after adding Cu2+. The detection limit for Cu2+ was found to be 57 nM L-1, with superior selectivity in the presence of other commonly interfering metal ions. The presented results in this study provide a facile and high-efficiency method for synthesizing N-GQDs, with ultra-high detectivity and selectivity for Cu2+ detection, offering numerous opportunities for the development of biosensing, bioimaging, environment monitoring, and others.

    关键词: Nitrogen-doped graphene quantum dots,Hydrothermal method,Photoluminescence quenching,Cu2+ detection

    更新于2025-09-19 17:13:59

  • Robot path planning with two-axis positioner for non-ideal sphere-pipe joint welding based on laser scanning

    摘要: The conversion and degradation of organic pollutants remain challenges relating to environmental science. Herein, we report the carbonization of organic pollutants (4-nitrophenol, 4-NP) toward metal-free nitrogen-doped graphene quantum dots (N-GQDs) using a one-pot solvothermal route. The resultant N-GQDs demonstrate excellent activity for the catalytic conversion of 4-NP to 4-aminophenol (4-AP) when exposed to near infrared (NIR) light because of their excellent upconverted photoluminescence and photothermal conversion ability. The NIR-enhanced reduction efficiency of 4-NP to 4-AP not only originates from the enhanced collisions between N-GQDs and 4-NP due to photothermal-increased Brownian movement of molecules, but also comes from the accelerated transfer rate of electrons produced by the photoexcitation of N-GQDs under NIR irradiation. The N-GQDs display excellent photostability and remain high activity even after five cycles of reuse. Such conversion of organic pollutants to highly efficient metal-free carbocatalysts has significant importance in relevance of the industrial production of aniline and paracetamol.

    关键词: organic pollutants,metal-free photocatalysts,4-nitrophenol reduction,nitrogen-doped graphene quantum dots,NIR-enhanced catalytic activity

    更新于2025-09-19 17:13:59

  • [IEEE 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP) - Zatoka, Ukraine (2018.9.9-2018.9.14)] 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP) - Efficient Two-Photon Luminescence for Bioimaging Using Polymer Conjugations of Graphene Quantum Dots Based Materials

    摘要: In this study, examination results revealed that conjugated polymers containing nitrogen and sulfur atoms lead to a higher quantum confinement of emissive energy trapped on the surface of material (graphene quantum dot (GQD)-polymers), resulting in a high luminescence quantum yield and impressive two-photon properties. Additionally, the GQD-polymers generated nonreactive oxygen species-dependent oxidative stress on cells. Furthermore, we demonstrated the effective use of two-photon excitation-mediated high two-photon luminescence intensity in an acidic environment enabled GQD-polymers to act as a promising contrast probe. When cancer cells are labeled with specific antibody GQD-polymers conjugates, molecular-specific imaging can be performed deep into a tissue phantom with extremely high signal-to-noise ratios. In situations in which imaging depths are limited by the maximum available power that can be delivered to the three-dimensional (3D) bioimaging plane without causing damage to tissue, GQD-polymers might provide sufficient brightness to extend the maximum depth of imaging. Moreover, we demonstrated that the use of GQD-polymers can expand the capabilities of two-photon imaging to allow noninvasive 3D bioimaging of a variety of new molecular signatures.

    关键词: photostability,reactive oxygen species,three-dimensional bioimaging,photodynamic therapy,two-photon excitation,contrast probe,graphene,quantum dot-polymer,two-photon luminescence,two-photon,contrast agent,nitrogen-doped graphene quantum dots

    更新于2025-09-16 10:30:52

  • A novel electrochemiluminescence sensor based on resonance energy transfer system between nitrogen doped graphene quantum dots and boron nitride quantum dots for sensitive detection of folic acid

    摘要: Electrochemiluminescence resonance energy transfer (ECL-RET) between quantum dots (QDs) was firstly proposed. In this work, boron nitride quantum dots (BNQDs) as the donor and nitrogen doped graphene quantum dots (NGQDs) as the acceptor were confirmed by the absorption spectrum, the emission spectrum and fluorescence spectrum. Based on the reaction between FA and the SO4?? in the ECL system of NGQDs/BNQDs/K2S2O8, the ECL sensing platform for FA was successfully constructed. Surprisingly, a stable and strong ECL signal was obtained based on the RET, which was used for signal-off detection of FA in the presence of coreactant K2S2O8. Notably, about 10-fold enhancement was observed compared with the absence of BNQDs. The proposed sensor showed wide linear ranges of 1.0 × 10?11 M to 1.0 × 10?4 M and a low detection limit of 5.13 × 10?12 M. Simultaneously, the sensor was successfully applied to detection of FA in human serum samples with excellent recoveries. Therefore, the NGQDs/BNQDs system provided a new perspective for development of novel ECL-RET sensors.

    关键词: Folic acid,Nitrogen doped graphene quantum dots,Resonance energy transfer,Boron nitride quantum dots,Electrochemiluminescence

    更新于2025-09-16 10:30:52

  • Preparation and cell imaging of nitrogen-doped graphene quantum dot conjugated indomethacin

    摘要: The nitrogen-doped graphene quantum dot conjugated indomethacin (N-GQD-IDM) was synthesized by an amide reaction. The results of FTIR indicated that the synthesis of N-GQD-IDM was successful. It was then co-cultured with MCF-7 cells, and obvious fluorescence was observed under a laser confocal scanning microscope. With the increase of incubation time, the material accumulated significantly in the cells and the fluorescence intensity of the cells was slightly improved. This compound could be suggested as a promising fluorescent probe in cancer cell labeling.

    关键词: indomethacin,fluorescent probe,cancer cell labeling,nitrogen-doped graphene quantum dots

    更新于2025-09-16 10:30:52

  • Advanced Electrode Materials Comprising of Structurea??Engineered Quantum Dots for Higha??Performance Asymmetric Microa??Supercapacitors

    摘要: Micro-supercapacitors (MSCs) as a new class of energy storage devices have attracted great attention due to their unique merits. However, the narrow operating voltage, slow frequency response, and relatively low energy density of MSCs are still insufficient. Therefore, an effective strategy to improve their electrochemical performance by innovating upon the design from various aspects remains a huge challenge. Here, surface and structural engineering by downsizing to quantum dot scale, doping heteroatoms, creating more structural defects, and introducing rich functional groups to two dimensional (2D) materials is employed to tailor their physicochemical properties. The resulting nitrogen-doped graphene quantum dots (N-GQDs) and molybdenum disulfide quantum dots (MoS2-QDs) show outstanding electrochemical performance as negative and positive electrode materials, respectively. Importantly, the obtained N-GQDs//MoS2-QDs asymmetric MSCs device exhibits a large operating voltage up to 1.5 V (far exceeding that of most reported MSCs), an ultrafast frequency response (with a short time constant of 0.087 ms), a high energy density of 0.55 mWh cm?3, and long-term cycling stability. This work not only provides a novel concept for the design of MSCs with enhanced performance but also may have broad application in other energy storage and conversion devices based on QDs materials.

    关键词: supercapacitors,electrode materials,engineering,molybdenum disulfide quantum dots,nitrogen-doped graphene quantum dots

    更新于2025-09-16 10:30:52

  • Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode

    摘要: Nitrogen-doped graphene quantum dots (NGQDs) are a diverse organic catalyst, competitive with other metallic catalysts due to their low cost, high stability, biocompatibility, and eco-friendliness. Highly functional multi-edge surfaces of NGQDs play a key role in imparting superb photocatalytic and electrocatalytic activity. However, when coating NGQDs by conventional techniques, such surfaces are not exposed for catalysis, due to the unwanted overlap of NGQDs sheets. To avoid this issue, here we propose a facile technique to orient NGQDs in a three-dimensional (3D) self-assembled foam-like structure, over reduced graphene oxide coated woven carbon fabric. This 3D assembled structure provides highly exposed active surfaces, which are readily available for catalytic reactions: however, in the conventional uniformly coated NGQDs layer, catalytic activity was limited by complex diffusion. The superb catalytic activity of the assembled NGQDs was utilized for the degradation of organic pollutant (methylene blue dye) from water. Additionally, the proposed electrode revealed much higher electrocatalytic activity than the rare Pt catalyst, owing to the easy diffusion of electrolyte and fast quenching of charges through the porous structure. The assembled NGQDs showed 50% higher photocatalytic degradation compared to uniformly coated NGQDs, which was further accelerated (50%) by application of the biased potential of 2 V; i.e. photo-electrocatalysis. The novel photo-electrocatalytic electrode offers high conductivity, stability, and flexibility, which make this complete carbon electrode highly attractive for other catalytic applications such as fuel cells, supercapacitors, and water splitting.

    关键词: Reduced graphene oxide,Photo-electrocatalysis,Stable electrode,Three-dimensional self-assembly,Nitrogen-doped graphene quantum dots

    更新于2025-09-12 10:27:22

  • Folic Acid-conjugated nitrogen-doped graphene quantum dots as fluorescent diagnostic material for MCF-7 cells

    摘要: This paper reports the preparation and application of folic acid-conjugated nitrogen-doped graphene quantum dot as a fluorescent diagnostic material for MCF-7 cells of breast cancer. Nitrogen-doped graphene quantum dots (N-GQD) were prepared by hydrothermal method using citric acid as carbon source and diethylamine as nitrogen source. The doping of different nitrogen contents was effectively controlled by diethylamine. As the amount of nitrogen increased, more binding sites on the nitrogen-doped graphene quantum dots were supplied to the folic acid. Laser confocal scanning microscopy showed that the more folic acid binding facilitated the recognition and swallowing by cancer cells, which made the labeled cells emit stronger fluorescence and thus cancer cells could be better detected. Cytotoxicity tests showed that the material was low cytotoxic, making it a promising prospect for fluorescent probes.

    关键词: fluorescent diagnostic material,nitrogen-doped graphene quantum dots,folic acid

    更新于2025-09-12 10:27:22

  • Improved Efficiency of Perovskite Solar Cells Using a Nitrogen Doped Graphene Oxide Treated Tin Oxide Layer

    摘要: Tin oxide (SnO2) is widely adopted as an electron transport layer in perovskite solar cells (PeSCs) because it has high electron mobility, excellent charge selective behavior owing to a large band gap of 3.76 eV, and low temperature processibility. In order to achieve highly efficient SnO2-based PeSCs it is necessary to control the oxygen vacancies in the SnO2 layer, since the electrical and optical properties vary depending on the oxidation state of Sn. This study demonstrates that the performance of PeSCs may be improved by using nitrogen doped graphene oxide (NGO) as an oxidizing agent for SnO2. Since NGO changes the oxidation state of the Sn in SnO2 from Sn2+ to Sn4+, the oxygen vacancies in SnO2 can be reduced using NGO. Multiple devices are fabricated and various techniques are used to assess their performance, including X-ray photoelectron spectroscopy, dark current analysis, and the dependence of the open circuit voltage on light intensity. Compared with the average power conversion efficiency (PCE) of control devices, PeSCs with SnO2:NGO composite layers exhibit greater PCE with less deviation. Therefore, introduction of NGO in a SnO2 layer can be regarded as an effective method of controlling the oxidation state of SnO2 to improve the performance of PeSCs.

    关键词: passivation,electron transport layer,perovskite solar cells,nitrogen doped graphene oxide,defects

    更新于2025-09-12 10:27:22

  • Insights into the formation of N doped 3D-Graphene Quantum Dots. Spectroscopic and Computational Approach

    摘要: In this work, we utilize a top-down approach to synthesize nitrogen doped graphene quantum dots from a 3D-graphene precursor via an eco-friendly hydrothermal method. The nanoparticles obtained showed a 2-3 nm diameter and well dispersion behavior in aqueous media. The reaction mechanism of insertion of nitrogen from polyvinylpolypyrrolidone onto the 3D-graphene structure, via an esterification reaction, was studied by the density functional theory, in addition, the kinetic and thermodynamic magnitudes of the reaction was analyzed with the help of Eyring's transition state theory and statistical thermodynamics. After analysis by ss-NMR and XPS spectroscopies, the functional groups involved in this process were characterized, and N was found mainly as amide / amine groups. Fluorescence emission, which exhibited a red shift (552 nm) and an emission maximum at 512 nm when excited at 480 nm, demonstrated a low stoke shift (Δλ =32 nm), explained by the proposed structural model.

    关键词: XPS,solid-state NMR,Nitrogen doped graphene quantum dots,DFT calculations

    更新于2025-09-12 10:27:22