- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 20th International Conference on Transparent Optical Networks (ICTON) - Bucharest (2018.7.1-2018.7.5)] 2018 20th International Conference on Transparent Optical Networks (ICTON) - Mitigation of Amplitude and Phase Distortions by Using Conjugate-NOLM Regenerator
摘要: In this paper we propose a conjugate nonlinear optical loop mirror scheme (Conj-NOLM) by cascading two NOLMs with an intermediate optical phase conjugator stage (OPC). This new configuration utilizes mid-span spectral inversion to cancel out the nonlinear phase distortion that is introduced by the two NOLM units. Moreover, numerical investigation has been carried out for 16-QAM signals demonstrating increased robustness against accumulated amplitude and phase distortions in the transmission links.
关键词: conjugate nonlinear optical loop mirror,all-optical regenerator,multilevel amplitude and phase noise suppression
更新于2025-09-23 15:22:29
-
[IEEE 2019 18th International Conference on Optical Communications and Networks (ICOCN) - Huangshan, China (2019.8.5-2019.8.8)] 2019 18th International Conference on Optical Communications and Networks (ICOCN) - Raman Dissipative-soliton Generation with a Nonlinear Optical Loop Mirror in a Polarization Maintaining Fiber Cavity
摘要: We report a Raman dissipative soliton generated in a mode-locked fiber laser with a nonlinear optical loop mirror. This configuration provides a method to obtain linearly polarized ultrafast laser at flexible wavelengths.
关键词: Raman scattering,nonlinear optical loop mirror,Mode-locked fiber lasers
更新于2025-09-16 10:30:52
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Direct Observation of Intracavity Pulse Dynamics in All-Normal Dispersion All-Fiber Oscillator
摘要: Ultrafast science and technology depend strongly on the development of novel ultrafast sources, thus good understanding of nonlinear phenomena in such systems is of essence. In this paper, we present the experimental observation and theoretical analysis of various pulse dynamics in all-normal dispersion cavity producing dissipative soliton pulses. We report the results of an extensive study regarding the Stimulated Raman Scattering (SRS) process, which creates a main upper limitation for the pulse energy achievable from all-normal dispersion fiber oscillators. We report the measurements of real-time, single shot spectra registered using Dispersive Fourier Transform (DFT) technique together with measured averaged spectral phase of the pulses generated from an all-PM-fiber oscillator mode-locked with Nonlinear Optical Loop Mirror (NOLM). It is found that NOLM parameters directly influenced the pulse stability and dynamics. The Yb-doped fiber was used as an active medium and Dissipative Soliton (DS) pulses centered at 1030 nm were generated together with Stokes radiation shifted by 440 cm-1 (centered approximately at 1078 nm) produced in SRS process. The light generated in SRS process was suppressed from round-trip to round-trip by a narrow pass-band spectral filter centered at 1030 nm placed inside the laser cavity. We present the broad experimental study of ultrashort pulse dynamics with strong presence of SRS process. Spectral intensity correlation maps were calculated to describe how the SRS process disturbs the ultrashort pulse during propagation in the cavity (Fig. 1). The intensities of longer wavelengths (1040 – 1050 nm) in the pulse spectrum were destabilized due to the SRS process. In normal dispersion fiber Stokes SRS components have higher group velocity than the pulse spectral components. For positively chirped pulse SRS affects only the leading edge of the pulse which is manifested as negative correlation (Fig. 1(c)). The phenomena of repetitive partial dissipative soliton explosions and bistability of the pulse operation in an all-PM-fiber all-normal dispersion oscillator cavity were investigated as well. The clear signature of bistable operation was the hysteresis of the laser pulse power versus input pump power. Furthermore, we registered significant differences between the measured pulses spectral phases for each case. Another set of measurements was performed to analyze the pulse self-starting dynamics. We present the experimental study and numerical simulations of DS pulse dynamics in an all-normal dispersion all-fiber cavity. The numerical simulations were performed using the standard split-step Fourier-transform method employing the multi-vibrational model of SRS. DS lasers are important pulse sources and an effective platform to investigate the pulse dynamics and nonlinear processes inside the all-fiber cavities.
关键词: spectral intensity correlation maps,Yb-doped fiber,dissipative soliton pulses,Dispersive Fourier Transform,split-step Fourier-transform method,Nonlinear Optical Loop Mirror,Stimulated Raman Scattering,ultrafast science
更新于2025-09-12 10:27:22
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Development of Figure-8 Variable Pulse Width Fiber Laser using Coherent Resonator Coupling Technology
摘要: A femtosecond pulsed laser has an extremely short pulse width and high peak power and is used for the field of microfabrication. On the other hand, laser cutting and drilling requires picosecond pulsed laser with high pulse energy. In general, a diffraction grating or a band pass filter is used to control pulse width. However, these components are not affordable and the optical system with them becomes complicated. Therefore, we have developed all fiber variable pulse width laser by applying a coherent resonator coupling technology that increases the output power by coupling the phases of longitudinal modes generated by sharing an output coupler in multiple laser resonators. In the coherent resonator coupling, resonator length difference decreases coupled longitudinal modes and narrows spectral width (?ν). Thus, pulse width (?t) is widened according to equation (1). ?t ? ?ν = const (1) We will describe the configuration of the resonator used in the experiment. A resonator coupling technology is applied to a figure-8 fiber laser. The figure-8 fiber laser is a ring resonator that contains a nonlinear optical loop mirror. It operates as a resonator only when a phase difference occurs between the clockwise light that travels through the loop of the mirror and the counter-clockwise one. The phenomenon functions as a saturable absorption effect and generates femtosecond pulses. Further, we use a variable delay line in one of the resonator to control resonator length difference. Figure 1 shows the configuration of the figure-8 variable pulse width fiber laser and Fig. 2 shows the configuration of a nonlinear optical loop mirror.
关键词: femtosecond pulsed laser,figure-8 fiber laser,picosecond pulsed laser,nonlinear optical loop mirror,coherent resonator coupling technology
更新于2025-09-12 10:27:22