修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

7 条数据
?? 中文(中国)
  • Light Emission from Selfa??Assembled and Lasera??Crystallized Chalcogenide Metasurface

    摘要: Subwavelength periodic confinement can collectively and selectively enhance local light intensity and enable control over the photoinduced phase transformations at the nanometer scale. Standard nanofabrication process can result in geometrical and compositional inhomogeneities in optical phase change materials, especially chalcogenides, as those materials exhibit poor chemical and thermal stability. Here the self-assembled planar chalcogenide nanostructured array is demonstrated with resonance-enhanced light emission to create an all-dielectric optical metasurface, by taking advantage of the fluid properties associated with solution-processed films. A patterned silicon membrane serves as a template for shaping the chalcogenide metasurface structure. Solution-processed arsenic sulfide metasurface structures are self-assembled in the suspended 250 nm silicon membrane templates. The periodic nanostructure dramatically manifests the local light–matter interaction such as absorption of incident photons, Raman emission, and photoluminescence. Also, the thermal distribution is modified by the boundaries and thus the photothermal crystallization process, leading to the formation of anisotropic nanoemitters within the field enhancement area. This hybrid structure shows wavelength-selective anisotropic photoluminescence, which is a characteristic behavior of the collective response of the resonant-guided modes in a periodic nanostructure. The resonance-enhanced Purcell effect can manifest the quantum efficiency of localized light emission.

    关键词: optical antennas,laser processing,optical nanostructures,metasurfaces,Raman emission

    更新于2025-09-23 15:19:57

  • Light from van der Waals quantum tunneling devices

    摘要: The understanding of and control over light emission from quantum tunneling has challenged researchers for more than four decades due to the intricate interplay of electrical and optical properties in atomic scale volumes. Here we introduce a device architecture that allows for the disentanglement of electronic and photonic pathways—van der Waals quantum tunneling devices. The electronic properties are defined by a stack of two-dimensional atomic crystals whereas the optical properties are controlled via an external photonic architecture. In van der Waals heterostructures made of gold, hexagonal boron nitride and graphene we find that inelastic tunneling results in the emission of photons and surface plasmon polaritons. By coupling these heterostructures to optical nanocube antennas we achieve resonant enhancement of the photon emission rate in narrow frequency bands by four orders of magnitude. Our results lead the way towards a new generation of nanophotonic devices that are driven by quantum tunneling.

    关键词: van der Waals heterostructures,inelastic electron tunneling,nanophotonics,light emission,quantum tunneling,optical antennas

    更新于2025-09-19 17:15:36

  • [IEEE 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting - Atlanta, GA, USA (2019.7.7-2019.7.12)] 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting - 2D Physical Optics Analysis of the Focal Region of Parallel-Plate Waveguide Lenses

    摘要: A physical optics (PO) method for computing the focal-region fields of a parallel-plate waveguide (PPW) lens is presented. A simplified delay line model is used to represent the delay section between inner and outer lens profile. The lens is analyzed by assuming a plane wave incident on the outer contour. For a given lens geometry, the resulting maximum field loci at different angles of incidence are reported. The close agreement with full-wave results by a commercial simulator validates the applicability of the underlying two-dimensional (2D) lens model. The developed tool is several orders of magnitude faster than the general purpose full-wave simulation and therefore presents an efficient auxiliary tool for the design of lens feed networks.

    关键词: parallel-plate waveguide lens,quasi-optical antennas,physical optics,beam-scanning,focal-region fields

    更新于2025-09-16 10:30:52

  • Plasmonic Metamaterials for Nanochemistry and Sensing

    摘要: Plasmonic nanostructures were initially developed for sensing and nanophotonic applications but, recently, have shown great promise in chemistry, optoelectronics, and nonlinear optics. While smooth plasmonic films, supporting surface plasmon polaritons, and individual nanostructures, featuring localized surface plasmons, are easy to fabricate and use, the assemblies of nanostructures in optical antennas and metamaterials provide many additional advantages related to the engineering of the mode structure (and thus, optical resonances in the given spectral range), field enhancement, and local density of optical states required to control electronic and photonic interactions. Focusing on two of the many applications of plasmonic metamaterials, in this Account, we review our work on the sensing and nanochemistry applications of metamaterials based on the assemblies of plasmonic nanorods under optical, as well as electronic interrogation.

    关键词: field enhancement,sensing,localized surface plasmons,optical antennas,nanochemistry,optical resonances,electronic interrogation,surface plasmon polaritons,metamaterials,Plasmonic nanostructures

    更新于2025-09-12 10:27:22

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Planar Optical Antennas as Efficient Single-Photon Sources for Free-Space and Fiber-Based Operation in Quantum Optics and Metrology

    摘要: Practical implementations of quantum technologies, ranging from optical quantum computing to metrological measurements, suffer from the lack of high-rate, on-demand sources of indistinguishable single photons. We will discuss a simple and versatile planar optical antenna, showing both theoretical and experimental evidence of low-loss (< 20%) beaming of the radiation from a single quantum emitter into a narrow cone of solid angles in free space, which allows in principle up to 50% coupling into a single-mode fiber. In particular, we will first present an experimental implementation of the design operated at room temperature, exploiting Dibenzoterrylene molecules (DBT) hosted in a crystalline anthracene matrix (Ac) [1]. The DBT:Ac system is particularly suitable for this task, due to its outstanding photo-physical properties (i.e. long-term photostability both at room and cryogenic temperature, lifetime-limited emission at cryogenic temperatures, 780 nm operating wavelength) demonstrated in 50 nm-thick crystals [2] and recently also in nanocrystals [3]. Moreover, single photons from DBT molecules and similar [4] result very appealing concerning quantum communication and computation protocols which involve quantum memories, due to the unmatched stability and narrowness of their spectrum (below 100 MHz). Then we will report on our theoretical study to determine the ultimate performances attainable with such design in case of operation in cryogenic environment, exploring materials and fine tuning of geometrical parameters. We will finally discuss our recent results about a single-mirror antenna operating at cryogenic temperature. We demonstrate a photon flux in the Fourier-limited line higher than 1MHz at detectors, and coupling of fluorescence into single-mode fibers up to 46%. These results open to the deploiment of our system both in quantum optics experiments requiring deterministic single-photon sources and in metrology, in particular for a new operative definition of the candela, as recently proposed in the EMPIR project 'SIQUST' [5].

    关键词: Quantum Optics,Single-Photon Sources,Dibenzoterrylene molecules,Metrology,Planar Optical Antennas,Crystalline anthracene matrix

    更新于2025-09-12 10:27:22

  • Exact Multipolar Decompositions with Applications in Nanophotonics

    摘要: The multipolar decomposition of electromagnetic sources is an important tool for the study of light–matter interactions in general, and optical materials in particular. Here, a report is given on recent progress in the multipolar decomposition of electromagnetic sources. First, the exact and simple expressions for the multipolar moments of electric current density distributions are reviewed, and then, the results are extended to multipolar moments of magnetization current density distributions due to intrinsic spin. The consideration of both electric and magnetic sources allows to establish the conditions for sources of pure handedness. Scripts are provided that facilitate the computation of multipolar moments of arbitrary order. The work and the included examples of use are placed in the context of nanophotonics and metamaterials, and an outlook for applications in these and other fields is provided.

    关键词: light–matter interactions,nanophotonics,multipole moments,optical antennas,theory

    更新于2025-09-10 09:29:36

  • Applied Nanophotonics || Lightwaves in restricted geometries

    摘要: The subject of this chapter is propagation, reflection, and evanescence of electromagnetic waves in continuous and complex media and structures to introduce the basics of wave optics and its implementation in novel nanophotonic conceptions. Electromagnetic waves propagate in a medium with positive permittivity, reflect at every permittivity step, and evanesce in a metal featuring negative permittivity. Combination of different dielectrics allows for wave confinement, tunneling, and energy storage, and gives rise to the photonic crystals notion. Combination of a metal with a dielectric material in nanostructures allows for optical material design like stained glass and very high local concentration of incident field to arrive at the notion of nanoplasmonics and optical antennas.

    关键词: wave optics,photonic crystals,optical antennas,nanophotonics,electromagnetic waves,nanoplasmonics

    更新于2025-09-09 09:28:46