- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Competition between Exceptionally Long‐Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties
摘要: Intra- and intermolecular ordering greatly impacts the electronic and optoelectronic properties of semiconducting polymers. The interrelationship between ordering of alkyl sidechains and conjugated backbones has yet to be fully detailed, despite much prior effort. Here, the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures, is reported. The sidechain ordering exhibits unusually large coherence lengths (≥70 nm), induces torsional/twisting backbone disorder, and results in a vertically multilayered nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in situ variable temperature scattering measurements in a model system poly{4-(5-(4,8-bis(3-butylnonyl)-6-methylbenzo[1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-yl)-2-(2-butyloctyl)-5,6-difluoro-7-(5-methylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole} (PBnDT-FTAZ) clearly delineate this competition of ordering that prevents simultaneous long-range order of both moieties. The long-range sidechain ordering can be exploited as a transient state to fabricate PBnDT-FTAZ films with an atypical edge-on texture and 2.5× improved field-effect transistor mobility. The observed influence of ordering between the moieties implies that improved molecular design can produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths.
关键词: semiconducting polymers,organic electronics,polymer crystals,molecular design,alkyl sidechains
更新于2025-09-04 15:30:14
-
H2S and NH3 Detection with Langmuir-Schaefer Monolayer Organic Field-Effect Transistors
摘要: In this work gas sensing properties of Langmuir-Schaefer monolayer organic field-effect transistors (LS OFETs) prepared from organosilicon derivative of [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) have been investigated. The monolayer has been deposited using Langmuir-Schaefer method, which results in a uniform low-defect monolayer with excellent electrical performance, hole mobility up to 7 × 10?2 cm2 V?1 s?1, the threshold voltage around 0 V and on-off ratio of 104. Developed sensors demonstrate a long-term stability of a half-year storage under ambient conditions. Preliminary investigations demonstrated that the LS OFETs give instantaneous response on ammonia and hydrogen sulfide at low concentrations. The results reported open new perspectives for the OFET-based gas-sensing technology.
关键词: OFETs,monolayer,organic electronics,chemical sensing,Langmuir-Schaefer
更新于2025-09-04 15:30:14
-
Impact of Low‐Frequency Vibrations on Charge Transport in High‐Mobility Organic Semiconductors
摘要: Despite decades of intensive studies of charge transport in organic semiconductors (OSs), understanding of mechanisms underpinning efficient charge transport in them remains elusive. Recently, it has been suggested that low-frequency (LF) vibrations are a limiting factor of charge transport in high-mobility OSs. Nevertheless, the relationship between the molecular structure, crystal packing, LF vibrations, and charge transport is still obscured. This hinders the focused search of high-mobility OSs so that researchers rely mainly on trial-and-error method. This review presents theoretical and experimental approaches to studying the LF vibrations and their role in charge transport with a focus on recent results. It is anticipated that tight cooperation between experimentalists and theorists will yield an advanced understanding of LF vibrations in OSs and their impact on charge transport. This will guide the design of novel high-mobility organic semiconductors for organic electronics.
关键词: structure–property relationship,organic electronics,Raman spectroscopy,electron–phonon interaction,charge mobility
更新于2025-09-04 15:30:14