- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics
摘要: The generation of electrical energy depending on renewable sources is rapidly growing and gaining serious attention due to its green sustainability. With fewer adverse impacts on the environment, the sun is considered as a nearly infinite source of renewable energy in the production of electrical energy using photovoltaic devices. On the other end, organic photovoltaic (OPV) is the class of solar cells that offers several advantages such as mechanical flexibility, solution processability, environmental friendliness, and being lightweight. In this research, we demonstrate the manufacturing route for printed OPV device arrays based on conventional architecture and using inkjet printing technology over an industrial platform. Inkjet technology is presently considered to be one of the most matured digital manufacturing technologies because it offers inherent additive nature and last stage customization flexibility (if the main goal is to obtain custom design devices). In this research paper, commercially available electronically functional inks were carefully selected and then implemented to show the importance of compatibility between OPV material stacks and the device architecture. One of the main outcomes of this work is that the manufacturing of the OPV devices was accomplished using inkjet technology in massive numbers ranging up to 1500 containing different device sizes, all of which were deposited on a flexible polymeric film and under normal atmospheric conditions. In this investigation, it was found that with a set of correct functional materials and architecture, a manufacturing yield of more than 85% could be accomplished, which would reflect high manufacturing repeatability, deposition accuracy, and processability of the inkjet technology.
关键词: inkjet technology,flexible electronics,organic photovoltaics,Indium Tin Oxide (ITO) free solar cells
更新于2025-11-14 17:28:48
-
Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics
摘要: Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm?2, resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.
关键词: non-fullerene acceptors,power conversion efficiency,voltage losses,charge separation,organic photovoltaics
更新于2025-11-14 15:18:02
-
Encapsulated Textile Organic Solar Cells Fabricated by Spray Coating
摘要: Solution based processes such as screen printing and spray coating are established processes for fabricating organic solar cells (OSCs) on flexible polymer substrates. However, realizing a flexible solar cell on a textile substrate remains a significant challenge due to the properties of the textile itself, which can present an absorbent, rough and fibrous surface. The textile also limits processing temperatures which can reduce functional materials performance. In this work, we demonstrate an optimized fabrication approach using entirely spray coating to fabricate textile OSCs with a power conversion efficiency (PCE) of 0.4 %. An interface layer is first deposited on the standard woven textile that forms a smooth supporting layer for the subsequent spray coated functional layers. A top encapsulation layer is deposited on top of the fabricated textile OSCs, which improves the durability and life time of the OSCs is evidenced by cyclic bending test.
关键词: Textile solar cells,solution processed fabric solar cells,spray coated solar cells,printed organic photovoltaics,fabric solar cells
更新于2025-09-23 15:23:52
-
Optimization and Validation of Efficient Models for Predicting Polythiophene Self-Assembly
摘要: We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate its utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer chains, model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We quantify the performance of our model to determine what the optimal system sizes are for exploring self-assembly at combinations of state variables. We perform molecular dynamics simulations to predict the self-assembly of P3HT at ~350 combinations of temperature and solvent quality. Our structural calculations predict that the highest degrees of order are obtained with good solvents just below the melting temperature. We find our model produces the most accurate structural predictions to date, as measured by agreement with grazing incident X-ray scattering experiments.
关键词: organic photovoltaics,molecular dynamics,coarse-graining
更新于2025-09-23 15:22:29
-
Recent Advances in Isoindigo-Inspired Organic Semiconductors
摘要: Over the past decade, isoindigo has become a widely used electron-deficient subunit in donor-acceptor organic semiconductors, and these isoindigo-based materials have been widely used in both organic photovoltaic (OPV) devices and organic field effect transistors (OFETs). Shortly after the development of isoindigo-based semiconductors, researchers began to modify the isoindigo structure in order to change the optoelectronic properties of the resulting materials. This led to the development of many new isoindigo-inspired compounds; since 2012, the Kelly Research Group has synthesized a number of these isoindigo analogues and produced a variety of new donor-acceptor semiconductors. In this Personal Account, recent progress in the field is reviewed. We describe how the field has evolved from relatively simple donor-acceptor small molecules to structurally complex, highly planarized polymer systems. The relevance of these materials in OPV and OFET applications is highlighted, with particular emphasis on structure-property relationships.
关键词: isoindigo,organic field effect transistors,organic materials,organic photovoltaics,conjugated polymers
更新于2025-09-23 15:21:01
-
Late-stage Customization in Volume Production of Organic Photovoltaics
摘要: Organic photovoltaics (OPV) in free-form shapes have become a unique feature compared to other thin-film photovoltaic technologies. The ability to conform coated layers to any form of shape or structure is a game changer for OPV and creates a paradigm shift in conventional energy businesses. As urban growth prevails, the energy requirement must be compensated by modern means and OPVs provide unique properties where its form or shape can be fully customized. This creates a synergy as they are then easily integrated onto structures or even products. By doing so not only the space requirements are diminished but the energy is delivered directly to the point of use rather than having them transported from central harvesting. The present communication discusses the advances in realizing such free-from patterns by structuring the functional layers to shape after they have been deposited which is referred to as late-stage customization. Using this approach, a pre-coated generic OPV material can be converted into any design upon customer request. The advantages include easier planning, shorter lead times in production as well as paving the way towards lean manufacturing.
关键词: renewable energies,mass production,organic photovoltaics (OPV),laser scribing,slot-die coating,module customization,roll-to-roll fabrication,dielectric material
更新于2025-09-23 15:21:01
-
Different agglomeration properties of PC <sub/>61</sub> BM and PC <sub/>71</sub> BM in photovoltaic inks a?? a spin-echo SANS study
摘要: Fullerene derivatives are used in a wide range of applications including as electron acceptors in solution-processable organic photovoltaics. We report agglomeration of fullerene derivatives in optically opaque solutions of PC61BM and PC71BM, with concentrations ranging from 30 mg mL?1 up to 90 mg mL?1, in different solvents with relevance to organic photovoltaics, using a novel neutron scattering technique, Spin-Echo Small Angle Neutron Scattering (SESANS). From SESANS, agglomerates with correlation lengths larger than 1 mm are found in some PC61BM solutions, in contrast no agglomerates are seen in PC71BM solutions. These results clearly show that PC71BM is fundamentally more soluble than PC61BM in the solvents commonly used in photovoltaic inks and corroborating similar observations previously achieved using other experimental techniques. Computer models are presented to study the energetics of solution and agglomeration of both species, ascribing the difference to a kinetic effect probably related to the larger anisotropy of PC71BM. Also, this work showcases the power of SESANS to probe agglomerates of fullerene derivatives in completely opaque solutions for agglomerates of the order of one to several microns.
关键词: Fullerene derivatives,SESANS,PC61BM,agglomeration,organic photovoltaics,PC71BM
更新于2025-09-23 15:21:01
-
Tailoring PEDOT:PSS polymer electrode for solution-processed inverted organic solar cells
摘要: The review of this paper was arranged by A. Zaslavsky. Conductivity and work function of the conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), has been investigated for a top electrode of the solution-processed organic solar cells (OPV). It has been found that both conductivity and work function could be changed by adjusting the mixing ratio of different commercial grade PEDOT:PSS such as PH 1000 and AI 4083. A 2:1 vol ratio of PH 1000 and AI 4083 mixture provided the conductivity of 443 S/cm (corresponding sheet resistance (Rsh) of 260 Ω/sq) and the work function of 5.09 eV. Therefore, this PEDOT:PSS mixture may work as both a hole transport layer (HTL) and anode electrode of the OPV. For verifying, all-solution-processed bulk heterojunction (BHJ) inverted OPVs were fabricated using developed PEDOT:PSS conductive polymers as both HTL and anode top electrode. Under the AM1.5G spectrum calibrated 100 mW/cm2 illumination, fabricated all-solution-processed OPV provides a best photo-conversion efficiency (PCE) of 2.04% accounted from an open circuit voltage (Voc) of 576 mV, a short circuit current (Jsc) of 6.91 mA/cm2, and a fill factor (FF) of 51.2%. In addition, the final OPV exhibits semitransparency due to no metal electrode on top and transparency of the conductive polymer.
关键词: Organic photovoltaics,Semitransparency,All-solution-process,Work function,Conductivity,PEDOT:PSS
更新于2025-09-23 15:21:01
-
Acceptora??donora??acceptor type molecules for high performance organic photovoltaics a?? chemistry and mechanism
摘要: The study of organic photovoltaics (OPVs) has made great progress in the past decade, mainly attributed to the invention of new active layer materials. Among various types of active layer materials, molecules with A–D–A (acceptor–donor–acceptor) architecture have demonstrated much great success in recent years. Thus, in this review, we will focus on A–D–A molecules used in OPVs from the viewpoint of chemists. Notably, the chemical structure–property relationships of A–D–A molecules will be highlighted and the underlying reasons for their outstanding performance will be discussed. The device stability correlated to A–D–A molecules will also be commented on. Finally, an outlook and challenges for future OPV molecule design and device fabrication to achieve higher performance will be presented.
关键词: chemical structure–property relationships,device stability,organic photovoltaics,acceptor–donor–acceptor,molecule design
更新于2025-09-23 15:21:01
-
Structure-Property Study of Homoleptic Zinc(II) Complexes of Di(arylethynyl) Azadipyrromethene as Non-Fullerene Acceptors for Organic Photovoltaics: Effect of Aryl Group
摘要: Azadipyrromethene-based zinc(II) complexes were demonstrated to be promising molecular organic semiconductors for electronic applications due to their easy preparation, tunable structures and high electron affinity. The first successful such complex incorporated phenylethynyl groups at the pyrrolic positions, which red-shifted the absorption spectra of zinc(II) bis(tetraphenyl azadipyrromethene) and improved morphology in blends with poly(3-hexylthiophene) (P3HT). We recently discovered that replacing the phenyl group in the pyrrolic positions with the larger 1-naphthyl group [Zn(L2)2] increases crystallinity and improves the organic photovoltaic (OPV) performance. In this work, two more aryl groups were explored to further investigate the relationship between the aryl groups in the pyrrolic position and electronic properties: naphthyl with a different anchoring site, 2-naphthyl [Zn(L3)2], and a larger aryl group, 9-phenanthrenyl [Zn(L4)2]. The larger aryl group slightly improved absorptivity and red-shifted the absorption spectra and lead to different packing modes in crystals with most intermolecular π-π stacking interactions being of T-shaped type involving the pyrrolic aryl group of one complex. Of the series, 1-naphthyl gave the highest crystallinity. The OPV power conversion efficiency (PCE) of Zn(L3)2 and Zn(L4)2 when blended with P3HT was 3.7% and 3.4%, respectively, both lower than that of Zn(L2)2, PCE of 5.5% due to higher trap-assisted recombination and less favorable morphology. Charge carrier mobility in these complexes was also relatively low, also limiting performance. Single-point energy calculations point to low overlap integrals as a cause for the low mobility. The aryl group anchoring position and size therefore have a large effect on properties in these systems, but do not appear to significantly enhance intermolecular interactions.
关键词: Azadipyrromethene,zinc(II) complexes,non-fullerene acceptors,structure-property study,organic photovoltaics
更新于2025-09-23 15:21:01