修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • UV-ozone induced surface passivation to enhance the performance of Cu2ZnSnS4 solar cells

    摘要: Interface property has been considered one of the most critical factors affecting the performance of semiconductor devices. In this work, we demonstrate an efficient surface passivation for the interface between Cu2ZnSnS4 (CZTS) and CdS buffer layer by using UV-ozone treatment at room temperature. The passivation led to a significant enhancement of short circuit current density (Jsc) of the device from 11.70 mA/cm2 to 18.34 mA/cm2 and thus efficiency of the CZTS solar cells from 3.18% to 5.55%. The study of surface chemistry has revealed that the UV-ozone exposure led to formation of a Sn–O rich surface on CZTS, which passivates the dangling bonds and forms an ultra-thin energy barrier layer at the interface of CZTS/CdS. The barrier is considered to be responsible for the reduction of non-radiative recombination loss in the solar cells as confirmed by photoluminescence (PL) measurement. The elongated lifetime of minority carriers in the CZTS solar cells by time-resolved PL has further verified the interface passivation effect induced by UV-ozone treatment. This work provides a fast, simple yet very effective approach for surface passivation of CZTS film to boost the performance of CZTS solar cells.

    关键词: CZTS solar cell,UV-Ozone treatment,Interface modification,Surface passivation

    更新于2025-11-21 11:01:37

  • Nitrogen-doped graphene quantum dots: Optical properties modification and photovoltaic applications

    摘要: In this work, we utilize a bottom-up approach to synthesize nitrogen self-doped graphene quantum dots (NGQDs) from a single glucosamine precursor via an eco-friendly microwave-assisted hydrothermal method. Structural and optical properties of as-produced NGQDs are further modified using controlled ozone treatment. Ozone-treated NGQDs (Oz-NGQDs) are reduced in size to 5.5 nm with clear changes in the lattice structure and ID/IG Raman ratios due to the introduction/alteration of oxygen-containing functional groups detected by Fourier-transform infrared (FTIR) spectrometer and further verified by energy dispersive X-ray spectroscopy (EDX) showing increased atomic/weight percentage of oxygen atoms. Along with structural modifications, GQDs experience decrease in ultraviolet–visible (UV–vis) absorption coupled with progressive enhancement of visible (up to 16 min treatment) and near-infrared (NIR) (up to 45 min treatment) fluorescence. This allows fine-tuning optical properties of NGQDs for solar cell applications yielding controlled emission increase, while controlled emission quenching was achieved by either blue laser or thermal treatment. Optimized Oz-NGQDs were further used to form a photoactive layer of solar cells with a maximum efficiency of 2.64% providing a 6-fold enhancement over untreated NGQD devices and a 3-fold increase in fill factor/current density. This study suggests simple routes to alter and optimize optical properties of scalably produced NGQDs to boost the photovoltaic performance of solar cells.

    关键词: photovoltaics,optical properties,ozone treatment,nitrogen-doped graphene quantum dots,solar cells

    更新于2025-11-19 16:56:42

  • Ultraviolet-ozone modification on TiO2 surface to promote both efficiency and stability of low-temperature planar perovskite solar cells

    摘要: As a classical electron transport layer, the high crystallinity TiO2 has been widely used in perovskite solar cells (PSCs), however, its high-temperature preparation process elevates the fabrication cost and limits its application. Here, we report an ultraviolet-ozone assisted strategy to modify low-temperature TiO2 interface for PSCs. In addition to the more appropriate work function and reinforced built-in potential, the lattice strain of perovskite films crystallized on modified TiO2 has also been released in some degree. Ultrafast transient absorption technique is employed to provide an deep insight into the carrier dynamics, revealing that less non-radiative recombination exists in the modified device. Interestingly, transient surface photovoltage results demonstrate that ultraviolet-ozone modification can efficiently suppress the decomposition of perovskite films under light illumination. Taking advantage of these facts, this device exhibits better efficiency and remarkable stability. This demonstrated low-temperature strategy is a promising way for fabricating low-cost, efficient and stable perovskite device.

    关键词: interface passivation,ultraviolet-ozone treatment,photocatalysis,low-temperature TiO2,perovskite solar cells

    更新于2025-09-19 17:13:59

  • Surface Treatment on Nickel Oxide to Enhance the Efficiency of Inverted Perovskite Solar Cells

    摘要: The organic-inorganic hybrid perovskites such as CH3NH3PbI3 have been considered as one of the most promising candidates for the next-generation photovoltaic materials due to its high absorption coefficient, low exciton binding energy, and long diffusion length. Herein, we have chosen NiOx as the hole transport material because metal oxides exhibit robust properties in air. We synthesized the NiOx film by a common sol-gel method. It is found that high-temperature annealing (500°C) is required to ensure the perovskite solar cell (PSC) with an efficiency over 15%. Low-temperature annealing (100°C) cannot convert the precursor materials to fully covered NiOx film, while the PSC based on mediate-temperature annealing (300°C) NiOx has larger resistance and thus lower efficiency. Fortunately, we have found that UV-ozone treatment on the NiOx film can reduce the resistance of the device based on 300°C annealed NiOx. The champion device can reach 16% efficiency with UV-ozone-treated 300°C annealed NiOx. This work has made it possible to reduce the annealing temperature of the sol-gel NiOx for high-efficiency PSCs, and it is believed that this simple surface treatment can be further employed in other metal oxide-based optoelectronic devices.

    关键词: perovskite solar cells,NiOx,annealing temperature,sol-gel method,UV-ozone treatment

    更新于2025-09-11 14:15:04