- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A High Performance Shade-Tolerant MPPT Based on Current-Mode Control
摘要: This paper proposes a high performance shade-tolerant maximum power point tracking (STMPPT) technique for DC-DC converter stage of photovoltaic (PV) applications. The average current-mode control (ACMC) is utilized to regulate the PV array current using two feedback control loops. The current-mode control is a superior scheme in control of DC-DC power electronic converters. The proposed STMPPT technique operates in two modes. The ACMC with the perturb and observe (P&O) MPPT algorithm functions in a local MPPT (LMPPT) mode under normal irradiance condition. When the PV array is likely to be partially shaded, a global MPPT (GMPPT) subroutine effectively scans the PV profile to optimize the PV system operation. This is achieved by implementing simple innovations to the ACMC-based P&O algorithm. The innovations benefit from useful observations of I-V characteristics. The idea behind using the I-V characteristics is to significantly reduce the search space, make the algorithm independent of shading conditions and PV array configuration, and inherently recognize the occurrence of partial shading conditions (PSCs). The proposed STMPPT technique enables very fast and reliable tracking of global maximum power point (GMPP). In addition, it can stably work under dynamic environmental change without losing correct sense of tracking direction. Its simplicity and independency would offer a viable solution for PV converter products. Simulation and experimental performance assessments are presented under different operating conditions that could happen in outdoor PV installations.
关键词: perturb and observe algorithm,partial shading condition,Photovoltaic system,current-mode control,shade-tolerant maximum power point tracking
更新于2025-09-19 17:15:36
-
A Maximum Power Point Tracking Algorithm for Photovoltaic Systems under Partially Shaded Conditions
摘要: This paper shows a modification of the traditional ‘perturb and observe’ algorithm used to the maximum power point tracking in photovoltaic systems. The proposal is justified by the need of algorithms to track the global maximum power point in solar panels connected in series under partially shaded conditions. The proposal tracks the global maximum power point avoiding the previous iterative search in local maximums. The algorithm performance is evaluated by simulations in the software PSIM and its behavior is compared with the traditional perturb and observe algorithm. The results show the outstanding performance of the modified algorithm in the tracking of the global maximum power point under different non uniform conditions of temperature and irradiance in the solar array.
关键词: perturb and observe algorithm,photovoltaic systems,DC-DC converters,maximum power point tracking
更新于2025-09-12 10:27:22