- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
NH2-MIL-125(Ti)/TiO2 Nanorod Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting
摘要: A photoactive amine-functionalized Ti metal-organic framework (MOF) (MIL(125)-NH2(Ti)) layer is uniformly coated on vertically ordered TiO2 nanorods (NRs) via a facile hydrothermal reaction, and the performance of the heterojunction photoanode in photoelectrochemical (PEC) water splitting is studied. The photocurrent density of the MIL(125)-NH2/TiO2 NRs reaches 1.63 mA/cm2 at 1.23 V vs. a reversible hydrogen electrode under AM 1.5 G simulated sunlight illumination, which is ~2.7 times higher than that of pristine TiO2 NRs. The incident photon-to-electron conversion efficiency of the MIL(125)-NH2/TiO2 NRs improves significantly at λmax = 340 nm, implying the promotion of water oxidation through efficient light absorption and charge separation. The enhancement of the PEC activity in the TiO2 NRs caused by an MIL(125)-NH2 coating is discussed in relation to the surface area and elongated configuration of the TiO2 NRs, the band gap of MIL(125)-NH2(Ti), and the type (II) heterojunction. This study demonstrates the rational design of heterojunctions between the semiconductor and the MOF, which paves the way for new facile and general approaches to achieve a high efficiency in water splitting.
关键词: TiO2 nanorod,Photoelectrochemical water splitting,Photoanode,MIL(125)-NH2,Hydrothermal reaction
更新于2025-09-09 09:28:46
-
Ion Beam Defect Engineering on ReS <sub/>2</sub> /Si Photocathode with Significantly Enhanced Hydrogen Evolution Reaction
摘要: Loading 2D layered transition metal dichalcogenides (TMDs) on p-type silicon photocathode is suitable for hydrogen production in solar-driven photoelectrochemical (PEC) water splitting. Similarly, various nanostructured TMDs exposing more active sites are widely explored for improving the PEC performances of composite photoelectrodes. Here, defect engineering using a controllable argon ion beam bombardment is presented on ReS2/Si photocathode. The atomic vacancy defects are introduced on the 2D ReS2 to realize high-density active sites, which significantly enhance the solar-driven hydrogen evolution reaction performance of ReS2/Si photocathode. The highest photocurrent density of 18.5 mA cm?2 (at 0 V vs reversible hydrogen electrode) is achieved, under a simulated sun irradiation.
关键词: ion beam bombardment,defect engineering,photocathodes,photoelectrochemical water splitting,ReS2
更新于2025-09-09 09:28:46
-
Mixed-Phase (2H and 1T) MoS2 Catalyst for a Highly Efficient and Stable Si Photocathode
摘要: We describe the direct formation of mixed-phase (1T and 2H) MoS2 layers on Si as a photocathode via atomic layer deposition (ALD) for application in the photoelectrochemical (PEC) reduction of water to hydrogen. Without typical series-metal interfaces between Si and MoS2, our p-Si/SiOx/MoS2 photocathode showed efficient and stable operation in hydrogen evolution reactions (HERs). The resulting performance could be explained by spatially genuine device architectures in three dimensions (i.e., laterally homo and vertically heterojunction structures). The ALD-grown MoS2 overlayer with the mixed-phase 1T and 2H homojunction passivates light absorber and surface states and functions as a monolithic structure for effective charge transport within MoS2. It is also beneficial in the operation of p-i-n heterojunctions with inhomogeneous barrier heights due to the presence of mixed-phase cocatalysts. The effective barrier heights reached up to 0.8 eV with optimized MoS2 thicknesses, leading to a 670 mV photovoltage enhancement without employing buried Si p-n junctions. The fast-transient behaviors via light illumination show that the mixed-phase layered chalcogenides can serve as efficient cocatalysts by depinning the Fermi levels at the interfaces. A long-term operation of ~70 h was also demonstrated in a 0.5 M H2SO4 solution.
关键词: pinch-off effect,molybdenum disulfide,photoelectrochemical water splitting (PEC),p-i-n heterojunction,atomic layer deposition (ALD)
更新于2025-09-04 15:30:14
-
Enhancing Solar‐Driven Water Splitting with Surface‐Engineered Nanostructures
摘要: Functional nanoscale interfaces that promote the transport of photoexcited charge carriers are fundamental to efficient hydrogen production during photoelectrochemical (PEC) splitting of water. Here, the realization of a functional one-dimensional nanostructure achieved through surface engineering of hematite (α-Fe2O3) nanorods with a TiO2 overlayer is reported. The surface-engineered hematite nanostructure exhibits significantly improved PEC performance as compared to untreated α-Fe2O3, with an increase in the maximum incident photon-to-current efficiency (IPCE) of nearly 400% at 350 nm. While addition of the TiO2 overlayer did not alter the lifetime of photoexcited charge carriers, as evidenced from transient absorption spectroscopy, it is found that the presence of TiO2 could enhance oxygen electrocatalysis by interfacial electron enrichment, largely attributed to enhanced O(2p)(cid:1)Fe(3d) hybridization. Moreover, the interfacial electronic structure revealed from XANES measurements of the α-Fe2O3/TiO2 nanorods suggests that photoexcited holes in α-Fe2O3 may efficiently transfer through the TiO2 overlayer to the electrolyte while electrons migrate to the external circuit along the one-dimensional nanorods, thereby promoting charge separation and enhancing PEC splitting of water.
关键词: photoelectrochemical water splitting,titania,surface engineering,hematite,nanostructure
更新于2025-09-04 15:30:14
-
Ta <sub/>3</sub> N <sub/>5</sub> /Co(OH) <sub/>x</sub> composites as photocatalysts for photoelectrochemical water splitting
摘要: Ta3N5 nanotubes (NTs) were obtained from nitridation of Ta2O5 NTs, which were grown directly on Ta foil through a 2-step anodization procedure. With Co(OH)x decoration, a photocurrent density as high as 2.3 mA cm?2 (1.23 V vs. NHE) was reached under AM1.5G simulated solar light; however, the electrode suffered from photocorrosion. More stable photoelectrochemical (PEC) performance was achieved by first loading Co(OH)x, followed by loading cobalt phosphate (Co–Pi) as double co-catalysts. The Co(OH)x/Co–Pi double co-catalysts may act as a hole storage layer that slows down the photocorrosion caused by the accumulated holes on the surface of the electrode. A “waggling” appearance close to the “mouth” of Ta2O5 NTs was observed, and may indicate structural instability of the “mouth” region, which breaks into segments after nitridation and forms a top layer of broken Ta3N5 NTs. A unique mesoporous structure of the walls of the Ta3N5 NTs, which is reported here the first time, is also a result of the nitridation process. We believe that the mesoporous structure makes it difficult for the nanotubes to be fully covered by the co-catalyst layer, hence rationalizing the remaining degradation by photocorrosion.
关键词: photoelectrochemical water splitting,photocorrosion,Co–Pi,Co(OH)x,mesoporous structure,Ta3N5 nanotubes
更新于2025-09-04 15:30:14
-
Efficient synthesis of BiFeO3 by the microwave-assisted sol-gel method: “A” site influence on the photoelectrochemical activity of perovskites
摘要: BiFeO3 (BF) and LaFeO3 (LF) perovskites were synthesized using a microwave-assisted (MW) and sol-gel (SG) methods. XRD, XPS, TEM, UV-DRS techniques were applied to study physicochemical properties of perovskites. In addition, Incident Photon-to-Current Efficiency (IPCE) measurements, Linear Sweep Voltammetry (LSV) and impedance spectroscopy were used to characterize electrochemical properties of the material. The band gap energy increases in the following way: BF-MW (2.05 eV), LF-MW (2.18 eV), BF-SG (2.26 eV) and LF-SG (2.54 eV), demonstrating a remarkable influence of the synthesis method on the optical and electronic properties of the materials. Furthermore, XRD showed a significant impact of the synthesis methods on the crystal structure. Perovskites synthesized under WM irradiation showed a pure crystal structure compared to the perovskites prepared by SG method, which contained some admixtures. IPCE shows that LF-MW has a better charge separation ability compared to BF-MW. However, BF-SG showed the highest activity. Temperature programmed reduction tests (TPR) revealed a better ability of BiFeO3 to adsorb/desorb oxygen, compared to LaFeO3. XPS measurements pointed at the presence of Fe4+. Finally, the photocatalytic activity of the perovskites was tested in solar water-splitting as a function of the synthesis method and presence of Bi and La in “A” sites of the ABO3 perovskites. We postulate, that the Jahn-Teller distortion effect in LF-MW increases its catalytic activity by decreasing the binding energy compared to BF-MW.
关键词: Microwave-assisted synthesis,Jahn-Teller distortion,Photocatalysts,Photoelectrochemical water splitting,Perovskites
更新于2025-09-04 15:30:14