- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Interactions between CdTe quantum dots and plasma proteins: kinetics, thermodynamics and molecular structure changes
摘要: Environmental particulate matter, especially ultrafine particles (< 100 nm in diameter), can damage the endothelium and favor cardiovascular disease in the general population. With the wide application of nanomaterials, exposure to nanoscale particles (nanoparticles) in the environment is increasing. Systematic study of the interaction of nanoparticles with plasma proteins is critically important for understanding the cardiovascular toxicity of nanomaterials. We combined kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) and conformational data from fluorescence spectroscopy and circular dichroism (CD) to explore the binding mechanism between cadmium telluride quantum dots (CdTe QDs) and plasma proteins. Special attention was paid to the interaction between CdTe QDs and coagulation-related proteins and the effects of CdTe QDs on protein conformation. The results showed that the binding affinities of CdTe QDs and plasma proteins depend on the nature of the protein and follow the order of fibrinogen (FIB) > plasminogen (PLG) > thrombin (TM) > metallothionein-II (MT-II) > human serum albumin (HSA). The interaction was primarily attributed to hydrophobic forces and the spontaneity of the occurrence of the interaction, and the protein secondary structures of FIB and PLG were changed significantly. The information gained in this study might shed light on the potential toxicity of QDs to the cardiovascular system.
关键词: plasma proteins,circular dichroism,isothermal titration calorimetry,CdTe quantum dots,surface plasmon resonance
更新于2025-09-23 15:19:57
-
Raman spectroscopic analysis of high molecular weight proteins in solution – considerations for sample analysis and data pre-processing
摘要: This study explores the potential of Raman spectroscopy, coupled with multivariate regression techniques and a protein separation technique (ion exchange chromatography), to quantitatively monitor diagnostically relevant changes in high molecular weight proteins in liquid plasma. Measurement protocols to detect the imbalances in plasma proteins as an indicator of various diseases using Raman spectroscopy are optimised, such that strategic clinical applications for early stage disease diagnostics can be evaluated. In a simulated plasma protein mixture, concentrations of two proteins of identified diagnostic potential (albumin and fibrinogen) were systematically varied within physiologically relevant ranges. Scattering from the poorly soluble fibrinogen fraction is identified as a significant impediment to the accuracy of measurement of mixed proteins in solution, although careful consideration of pre-processing methods allows construction of an accurate multivariate regression prediction model for detecting subtle changes in the protein concentration. Furthermore, ion exchange chromatography is utilised to separate fibrinogen from the rest of the proteins and mild sonication is used to improve the dispersion and therefore quality of the prediction. The proposed approach can be expeditiously employed for early detection of pathological disorders associated with high or low plasma/serum proteins.
关键词: sonication,pre-processing,disease diagnostics,Raman spectroscopy,plasma proteins,ion exchange chromatography,multivariate regression
更新于2025-09-19 17:15:36