- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) - Cleveland, OH, USA (2018.10.17-2018.10.19)] 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) - Like Kleenex for Wearables: A soft, strong and disposable ECG monitoring system
摘要: Although electrocardiography (ECG) monitoring systems have been available in the form of wearable patches for the better part of two decades, they are limited in their ability to be utilized as inexpensive, yet vital short-term measurement devices that are (truly) completely disposable. Advancing current practices in soft conformable electronics, we present a Bluetooth-enabled, fully disposable single-lead ECG patch comprising ink-jet printed Ag-AgCl electrodes and components integrated on a single, flexible hybrid printed circuit board with an average current consumption of 3.6 mA from a 3.0 V stack of four flexible Lithium polymer batteries. As part of the Live Demonstration, our goals are to showcase the patch’s functionality including real-time continuous ECG display and fall detection, and the flexible enclosures and adhesives conferring its unique softness, strength and disposability following a 7-day lifespan.
关键词: Wearable,Printed Electrodes,Disposable,Real-time ECG,Flexible Hybrid PCB
更新于2025-09-23 15:23:52
-
Electrophysiology Meets Printed Electronics: The Beginning of a Beautiful Friendship
摘要: Electroencephalography (EEG) and surface electromyography (sEMG) are notoriously cumbersome technologies. A typical setup may involve bulky electrodes, dangling wires, and a large amplifier unit. Adapting these technologies to numerous applications has been accordingly fairly limited. Thanks to the availability of printed electronics, it is now possible to effectively simplify these techniques. Elegant electrode arrays with unprecedented performances can be readily produced, eliminating the need to handle multiple electrodes and wires. Specifically, in this Perspective paper, we focus on the advantages of electrodes printed on soft films as manifested in signal transmission at the electrode-skin interface, electrode-skin stability, and user convenience during electrode placement while achieving prolonged use. Customizing electrode array designs and implementing blind source separation methods can also improve recording resolution, reduce variability between individuals and minimize signal cross-talk between nearby electrodes. Finally, we outline several important applications in the field of neuroscience and how each can benefit from the convergence of electrophysiology and printed electronics.
关键词: wearable sensors,EMG,printed electrodes,skin electronics,EEG
更新于2025-09-23 15:22:29
-
[IEEE 2018 IEEE International Conference on Electro/Information Technology (EIT) - Rochester, MI, USA (2018.5.3-2018.5.5)] 2018 IEEE International Conference on Electro/Information Technology (EIT) - Electrochemical Phosphate Sensors Using Silver Nanowires Treated Screen Printed Electrodes
摘要: Essential biomolecules of the human body and plant growth depend upon the proper amount of phosphate ions. Phosphorus has critical values in both agricultural and biomedical applications. There is a need for inexpensive, portable, repeatable, highly sensitive and field deployable sensors with wide detection range to monitor the health of water system and to develop an electrochemical phosphate sensor using novel ammonium molybdate (AMT/AgNWs) modified screen printed electrode (SPE) for phosphate detection to achieve simplicity, high sensitivity, wide detection range, and high repeatability and portability. The cyclic voltammetry measurements exhibited the sensitivities of AMT modified SPE without and with AgNWs are 0.1 μA/μM and 0.71 μA/μM, respectively. The use of highly conductive AgNWs significantly increased the sensitivities of the AMT/SPE. Besides, AgNWs and AMT modified SPE (AMT/AgNWs/SPE) showed a very wide detection range of 5 μM -1 mM. Moreover, the proposed sensor demonstrated a good repeatability and recovery. Our work suggests that AMT/AgNWs/SPE is promising for simple, low-cost, and portable phosphate ion detection.
关键词: phosphate detection,ammonium molybdate,screen printed electrodes,electrochemical phosphate sensors,silver nanowires
更新于2025-09-10 09:29:36
-
Application of spectroelectroanalysis for the quantitative determination of mixtures of compounds with highly overlapping signals
摘要: The amount of qualitative and quantitative information provided by a UV?vis absorption spectroelectrochemistry (SEC) experiment is sometimes wasted. However, almost all electrochemical and spectroscopic data can provide valuable information. In this spirit, the main objective proposed in this work is the quantitative resolution of catechol/dopamine (CAT/DA) and dopamine/epinephrine (DA/EP) mixtures, using spectroelectrochemical sensors in long optical path length arrangement based on bare optical fibers in parallel configuration with respect to carbon nanotubes or screen-printed electrodes. These compounds show extremely similar electrochemical and spectroscopic responses at high acidic pH, being impossible to determine their concentrations in the mixtures just using univariate regression models. To our knowledge, the SEC ability to resolve complex mixtures has never been demonstrated before with signals with this degree of overlapping. The quantitative analysis of these mixtures is possible using multivariate regression analysis of a set of time-resolved spectroelectrochemical data with a powerful statistical tool such as parallel factor analysis (PARAFAC). PARAFAC enables us to extract all the information from the experiments, allowing us to quantify the different analytes in mixtures of varying concentrations with excellent results. This milestone for spectroelectroanalysis illustrates the expected capabilities of SEC and demonstrates experimentally the potential of this technique for sensing of biomolecules.
关键词: screen-printed electrodes,dopamine,optical fibers,epinephrine,carbon nanotubes,spectroelectrochemistry
更新于2025-09-10 09:29:36