修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Data-driven and probabilistic learning of the process-structure-property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics

    摘要: Two-dimensional (2-D) semiconductors have been intensely explored as alternative channel materials for future generation ultra-scaled transistor technology [1–8]. However, significant roadblocks (e.g., poor carrier mobilities [9–11], instability [4,5,10], and vague potential in scaling-up [10,12–15]) exist that prevent the realization of the current state-of-the-art 2-D materials’ potential for energy-efficient electronics. The emergent solution-grown tellurene exhibits attractive attributes, e.g., high room-temperature mobility, large on-state current density, air-stability, and tunable material properties through a low-cost, scalable process, to tackle these challenges [16]. Nevertheless, the fundamental manufacturing science of the hydrothermal processing for tellurene remains elusive. Here, we report on the first systematic, data-driven learning of the process-structure-property relationship in solution-grown tellurene, revealing the process factors’ effects on tellurene’s production yield, dimensions, and transistor-relevant properties, through a holistic approach integrating both the experimental explorations and data analytics. We further demonstrate the application of such fundamental knowledge for developing tellurene transistors with optimized and reliable performance, which can enable the cost-effective realization of high-speed, energy-efficient electronics.

    关键词: Process-structure-property relationship,2-D materials,Energy-efficient electronics,Nanomanufacturing,Tellurene,Data-driven learning

    更新于2025-09-23 15:23:52

  • Direct printing of performance tunable strain sensor via nanoparticle laser patterning process

    摘要: Flexible electronics are attractive because of flexibility and portability. The circuits are printed on flexible substrates, which are delicate and heat-sensitive. Traditional photolithography, which uses high temperatures and corrosive chemicals, easily causes damages in flexible substrates. Here, we develop a low-cost nanoparticle based laser patterning process for fabrication of flexible electronics. Nanoparticles are sintered using a low-power laser as they are selectively deposited. Copper and silver particles were successfully deposited on paper and polyethylene terephthalate substrates. The effects of process parameters on deposition performance were studied to understand the process-structure–property relationship. The thermal effects of the laser on film morphology were observed. The sensitivities of the electrical properties with respect to the porosities at different laser power densities were analysed. With different laser energy levels, the process allows for selective deposition, properties control of printed patterns, and flexible substrate cutting. The fabrications of strain sensor and kirigami electronics were demonstrated.

    关键词: strain sensor,electrical properties,hybrid manufacturing,Nanoparticle deposition,flexible electronics,process-structure–property relationship

    更新于2025-09-23 15:19:57