修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Solar irradiance estimations for modeling the variability of photovoltaic generation and assessing violations of grid constraints: A comparison between satellite and pyranometers measurements with load flow simulations

    摘要: Global horizontal irradiance (GHI) is typically used to model the power output of distributed photovoltaic (PV) generation. On the one hand, satellite estimations are nonpervasive and already available from commercial providers, but they have a limited spatiotemporal resolution. On the other hand, local estimations, e.g., from pyranometers, sky-cameras, and monitored PV plants, capture local irradiance patterns and dynamics, but they require in situ monitoring infrastructure and upgrading the asset of electrical operators. Considering that in most power systems, PV generation is typically the aggregated contribution of many distributed plants, are local GHI estimations necessary to characterize the variability of the power ?ow at the grid connection point (GCP) and detect violations of the limits of voltages and line currents accurately? To reply, we consider GHI measurements from a dense network of pyranometers (used to model the ground truth GHI potential), satellite estimations for the same area, and information about a medium and low voltage distribution system. We perform load ?ows at different levels of installed PV capacity and compare the nodal voltages, line currents, and the power at the GCP when the irradiance is from pyranometers and when from satellite estimations, deriving conclusions on the necessity, or not, of highly spatiotemporally resolved irradiance estimations.

    关键词: solar irradiance,grid constraints,satellite measurements,pyranometers,load flow simulations,photovoltaic generation

    更新于2025-09-11 14:15:04

  • Improving the calibration of silicon photodiode pyranometers

    摘要: Reliable measurements of global irradiance are essential for research and practical applications. Silicon photodiode pyranometers (SiPs) offer low-cost sensors to measure direct and diffuse irradiance despite their non-uniform spectral response over the 300–1000 nm spectral range. In this study, non-adjusted linear and adjusted calibrations were applied at different times of the year to determine sources of estimated errors in global irradiance due to the two calibration approaches, calibration time, and sensor age. 16 SiPs, along with two standards, measured incident global irradiance over a 5-year period under a range of sky conditions. Sensors performed best in the months in which they were calibrated when using the linear calibration approach. With the solar zenith angle adjusted calibration approach, certain calibration months provide a defendable validation for the following 12 months [ranging an average of 13.5–17.4 W m?2 standard error (SE)], while other calibration months do not provide consistent results and sometimes result in very poor validation (31.1–242.7 W m?2 SE). Older sensors (greater than 6 years) in general become more sensitive to solar zenith angle and their response drifts over time, while newer SiPs performed better than older sensors. Calibrations which accounted for solar zenith angle effects improved global irradiance estimates for older SiPs. For the Lincoln NE location, the appropriate calibration is in spring or late summer, regardless of calibration approach. These results indicate that solar zenith angle correction is not needed for largely diffuse components under cloudy conditions, so that in the future, a “smart” calibration may be possible, where diffuse radiation fractions are known.

    关键词: Silicon photodiode pyranometers,Sensor age,Calibration,Solar zenith angle,Global irradiance

    更新于2025-09-04 15:30:14