- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Modeling of high-fluence irradiation of amorphous Si and crystalline Al by linearly focused Ar ions
摘要: Long time ion irradiation of surfaces under tilted incidence causes formation of regular nanostructures known as surface ripples. The nature of mechanisms leading to ripples is still not clear, this is why computational methods can shed the light on such a complex phenomenon and help to understand which surface processes are mainly responsible for it. In this work, we analyse the surface response of two materials, a semiconductor (silicon) and a metal (aluminium) under irradiation with the 250 eV and 1000 eV Ar ions focused at 70° from the normal to the surface. We simulate consecutive ion impacts by the means of molecular dynamics to investigate the effect on ripple formation. We find that the redistribution mechanism seems to be the main creator of ripples in amorphous materials, while the erosion mechanism is the leading origin for the pattern formation in crystalline metals.
关键词: nanostructuring,ripple formation,surface,erosion,redistribution
更新于2025-09-19 17:15:36
-
Modifying the electrical properties of graphene by reversible point-ripple formation
摘要: Strain, ripples and wrinkles in graphene reduce the charge-carrier mobility and alter the electronic behaviour. In few-layer graphene the anisotropy between the in-plane and cross-plane resistivity is altered and a band gap can be opened up. Here we demonstrate a method to reversibly induce point ripples in electrically isolated few-layer graphene with the ability to select the number of layers used for transport measurement down to single layer. During ripple formation the in-plane and cross-plane sheet resistances increase by up to 78% and 699% respectively, confirming that microscopic corrugation changes can solely account for graphene's non-ideal charge-carrier mobility. The method can also count the number of layers in few-layer graphene and is complimentary to Raman spectroscopy and atomic force microscopy when n ≤ 4. Understanding these changes is crucial to realising practical oscillators, nano-electromechanical systems and flexible electronics with graphene.
关键词: charge-carrier mobility,graphene,electrical properties,flexible electronics,nano-electromechanical systems,point-ripple formation
更新于2025-09-09 09:28:46