- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Towards photovoltaic windows: scalable fabrication of semitransparent modules based on non-fullerene acceptors <i>via</i> laser-patterning
摘要: Semitransparent organic photovoltaics (OPV) possess unique properties that make them highly appealing for their integration into semitransparent architectonic elements such as windows or glazings. In order to provide sufficient transparency, non-opaque electrodes and thin photoactive layers are typically used, thus limiting the light-harvesting capacity. This can be partially overcome by using materials that absorb light mostly in the infrared region. On the other hand, the use of scalable techniques for the fabrication of semitransparent devices is often disregarded. In this work, we combine the blue, low-bandgap polymer PBTZT-stat-BDTT-8 with the near-infrared absorbing non-fullerene acceptor 4TICO, adapting the module fabrication to low-cost manufacturing processes that are compatible with large-scale production. Fully solution-processed semitransparent solar cells over 4.7% performance are prepared from non-chlorinated formulations, in air and using scalable techniques such as blade coating. Our prototypes of semitransparent laser-patterned OPV modules exceed 30% of transparency (measured as human perception transmittance, HPT) and yield efficiencies in the range of 4%, geometrical fill factors surpassing 90% and an active area above 1 cm2. We verify the quality of cell-to-cell interconnection and optimise the geometry of the modules with the help of local optoelectronic imaging techniques. This work highlights the relevance of non-fullerene acceptors with strong absorption in the near-infrared, as they can meet industrial and technical requirements for the upscaling and integration of high-performance semitransparent OPV modules with low production costs.
关键词: scalable fabrication,laser-patterning,non-fullerene acceptors,photovoltaic windows,semitransparent organic photovoltaics
更新于2025-09-23 15:21:01
-
Semitransparent Energya??Storing Functional Photovoltaics Monolithically Integrated with Electrochromic Supercapacitors
摘要: Energy-storing functional photovoltaics, which can simultaneously harvest and store solar energy, are proposed as promising next-generation multifunction energy systems. For the extension of conventional organic photovoltaics (OPVs), electrochromic supercapacitors (ECSs) are monolithically integrated with semitransparent (ST) quaternary blend-based OPVs (ST Q-OPVs) to achieve compact, energy-efficient storage with great aesthetic appeal. In particular, ST Q-OPVs with low-power-consumption ECSs allow full operation, even under low-intensity irradiance, including artificial indoor light circumstances, and thereby exhibit potential for all-day operating energy suppliers. The prepared ST energy-storing functional photovoltaics also serve as a backup power source for external electronic equipment (e.g., light-emitting diodes, and sensor nodes for Internet of Things) by consuming charged power. In addition to features that include unrestricted operation under any circumstances, color tunability, feasibility of designs with various shapes, rapid charging/discharging, and real-time indication of stored energy levels, ST energy-storing functional photovoltaics could potentially be applied in electronic devices such as advanced smart windows or portable smart electronics.
关键词: semitransparent organic photovoltaics,electrochromic supercapacitors,energy-storing functional photovoltaics,monolithic integration
更新于2025-09-19 17:13:59