- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Dynamic Color-Switching of Plasmonic Nanoparticle Films
摘要: The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid-state plasmonic color-switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color-switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OH? ions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color-switching. Such plasmonic films can be printed as high-resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.
关键词: plasmonic color-switching,nanoparticles,silver,films,sodium borate
更新于2025-09-11 14:15:04
-
Investigation of sintering kinetics and morphological evolution of silver films from nano-dispersion
摘要: The present study aimed at investigating the sintering kinetics and the mechanism of achieving uniform film morphology from silver nano-dispersion through evaporation of the solvent. A tuned time elapse between drop casting of silver dispersion and the annealing (dwell-time) acted as the decision maker in engineering the morphology: ring stain (infinite dwell-time), uniform deposit (variable dwell-time) and dot formation (zero dwell-time). Three distinct dwell-times (10, 20 and 30 min) are chosen for the study at different temperatures (120 to 250 °C) and the conclusion is derived based on the profile of the deposit. The frozen morphology that resulted from the evaporation goes through the debonding of surfactant with simultaneous sintering to minimize the surface energy. A linear isothermal sintering model comprising initial grain size, grain growth parameter, annealing time and fractional porosity helps to predict the grain size post-annealing. Theoretical predictions of grain sizes are well matched with experimental ones. The grain growth parameter which shows an upward trend with the annealing temperature is mainly due to a reduction in the porosity and the increase in the fraction of solid–solid interface which shows betterment in the percolation paths available for the movement of carriers.
关键词: sintering kinetics,dwell-time,silver films,nano-dispersion,morphological evolution
更新于2025-09-09 09:28:46
-
Formation of silver films for advanced electrical properties by using aerosol deposition process
摘要: A simple room temperature aerosol deposition (AD) process was used to fabricate silver thick films for high efficiency metallization that can be applied to decrease the resistance–capacitance delay and increase the signal propagation speed in integrated circuits. To obtain more advanced performance than aerosol-deposited silver films reported in previous studies, experimental parameters (orifice size of nozzle and gas consumption) that could directly affect electrical resistivity were optimized in advance. The proper small orifice size was selected for facilitated reduction of electrical resistivity by activating the percolation effect and making more conduction channels. High gas consumption also reduced the electrical resistivity of the silver films, forming plenty of metal clusters. Using experimental parameters that showed the lowest resistivity, silver thick films were fabricated via the AD process and their properties were analyzed. The results of the X-ray diffraction confirmed that the silver particles underwent impact-induced plastic deformation. As the film thickness was thickened up to 12 scans, the collided particles filled up the rough alumina substrate. After 12 scans, the silver films became densified due to severe plastic deformation of the as-deposited silver particles. Therefore, the growth mechanism suggests that most silver particles in the initial deposition step contribute to mechanical interlocking, and the subsequent particles could lead to film densification.
关键词: aerosol deposition,electrical resistivity,silver films,metallization,integrated circuits
更新于2025-09-04 15:30:14