- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- 2014
- solar cell
- hybrid-resonant PWM switching
- PWM switching
- MPPT
- resonant converter
- solar power
- Geostationary satellite images
- Global and direct solar radiation
- Meteorological station
- validation
- Electrical Engineering and Automation
- New Energy Science and Engineering
- Optoelectronic Information Science and Engineering
- Optoelectronic Information Materials and Devices
- Applied Physics
- National technical University “Kharkiv Polytechnic Institute”
- University of évora
- Fraunhofer Institute for Solar Energy Systems ISE
- University of Tunis El Manar
- Zeal College of Engineering and Research
- Northern (Arctic) Federal University named after M.V. Lomonosov
- Cochin University College of Engineering
- National Renewable Energy Laboratory
- NED University
- Universidad Veracruzana
-
Formation of CoTe2 embedded in nitrogen-doped carbon nanotubes-grafted polyhedrons with boosted electrocatalytic properties in dye-sensitized solar cells
摘要: Developing high active and earth-abundant electrocatalysts is a challenge for commercialization of dye-sensitized solar cells (DSSCs). Herein, a designed synthesis of CoTe2 nanoparticles embedded in nitrogen-doped carbon nanotubes-grafted polyhedron (CoTe2@NCNTs) using zeolitic imidazolate framework-67 (ZIF-67) as template is reported. Benefiting from the high surface area induced by the in situ growth of CNTs and the synergistic effect between CoTe2 and the N-doped nanostructured carbon, CoTe2@NCNTs hybrids exhibit remarkable catalytic activity toward the reduction of I3? ions. When employed as counter electrode (CE) of DSSCs, CoTe2@NCNTs hybrids deliver overwhelming power conversion efficiency (PCE) of 9.02%, possessing ~12% improvement compared with the Pt CE (8.03%). This study provides an emerging substitute for traditional Pt CE and a strategy to synthesize efficient electrocatalysts via rational surface engineering.
关键词: Carbon nanotubes,Counter electrode,Dye-sensitized solar cells,Cobalt telluride
更新于2025-11-14 17:04:02
-
Hierarchical ZnO microspheres embedded in TiO2 photoanode for enhanced CdS/CdSe sensitized solar cells
摘要: Control of structural and compositional characteristics of photoanodes is a crucial step toward rapid transport of charges and high efficiency loading of dye or quantum dots in case of solar cell application. A hierarchical ZnO microspheres (ZMS) and TiO2 hybrid photoanode film was prepared for improved CdS/CdSe quantum dot sensitized solar cells (QDSCs). The addition of ZMS into TiO2 electrode films resulted in both increased short circuit current density (Jsc) and open circuit voltage (Voc). Such an improvement is ascribed to the increased light harvesting owing to scattering by ZMS and the reduced charge recombination due to the surface modification. TiO2/ZMS hybrid photoanode displays superior charge injection/transport performance due to the ZMS with unique hierarchical structure, providing charge transfer continuity and multiple electron transport channels for timely electron transport. As a result, the Jsc, Voc, and the photovoltaic conversion efficiency (PCE) were all remarkably enhanced with the insertion of hierarchical ZMS though varied appreciably with the amount of ZMS. Thus, the designed TiO2/ZMS heterostructure based QDSCs with an optimizing ZMS ratio of 20 wt% achieved a PCE of 5.99%, which is about 35% increase of the efficiency for the devices without ZMS (4.45%).
关键词: electron transport,ZnO microspheres,charge injection,quantum dot-sensitized solar cells,photoanode,light scattering
更新于2025-11-14 17:04:02
-
Hierarchical TiO <sub/>2</sub> microspheres composed with nanoparticle-decorated nanorods for the enhanced photovoltaic performance in dye-sensitized solar cells
摘要: Hierarchical TiO2 microspheres composed of nanoparticle-decorated nanorods (NP-MS) were successfully prepared with a two-step solvothermal method. There were three benefits associated with the use of NP-MS as a photoanode material. The decoration of nanoparticles improved the specific surface area and directly enhanced the dye loading ability. Rutile nanorods serving as electron transport paths resulted in fast electron transport and inhibited the charge recombination process. The three-dimensional hierarchical NP-MS structure supplied a strong light scattering capability and good connectivity. Thus, the hierarchical NP-MS combined the beneficial properties of improved scattering capability, dye loading ability, electron transport and inhibited charge recombination. Attributed to these advantages, a photoelectric conversion efficiency of up to 7.32% was obtained with the NP-MS film-based photoanode, resulting in a 43.5% enhancement compared to the efficiency of the P25 film-based photoanode (5.10%) at a similar thickness. Compared to traditional photoanodes with scattering layers or scattering centers, the fabrication process for single layered photoanodes with enhanced scattering capability was very simple. We believe the strategy would be beneficial for the easy fabrication of efficient dye-sensitized solar cells.
关键词: electron transport,dye-sensitized solar cells,solvothermal method,Hierarchical TiO2 microspheres,photovoltaic performance
更新于2025-11-14 17:04:02
-
Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF <sub/>4</sub> :Eu <sup>3+</sup> nanophosphors
摘要: Perovskite solar cells assembled with titanium dioxide electron transport layer exhibited brilliant photovoltaic properties due to titanium dioxide having a high electron mobility, appropriate energy level alignment and easy fabrication procedure. However, inherent instability exists in titanium dioxide-based perovskite solar cells because of the ultraviolet photocatalytic activity of titanium dioxide. This results in recombination at the interface of titanium dioxide/perovskite. In this report, the down-conversion nanocrystals film made of europium-doped sodium yttrium fluoride was deposited on the non-conducting side of the conducting glass. The down-conversion nanocrystal layer could absorb high energy ultraviolet photons and converted them to visible light. The layer not only extended the spectral response range for perovskite solar cells but also alleviated the photocatalytic activity of titanium dioxide. The perovskite solar cells with the down-conversion nanocrystals film generated average power conversion efficiency yield of 19.99%, which is much better than that of the device without the down-conversion nanocrystals film (16.99%). The best power conversion efficiency for the device with the down-conversion nanocrystals film was 20.17%. In addition, perovskite solar cells with the down-conversion nanocrystals film showed a small hysteresis.
关键词: titanium dioxide,down-conversion,NaYF4:Eu3+ nanophosphors,photovoltaic performance,perovskite solar cells
更新于2025-11-14 17:04:02
-
Synthesis of ZnxCd1-xSe@ZnO Hollow Spheres in Different Sizes for Quantum Dots Sensitized Solar Cells Application
摘要: ZnxCd1-xSe@ZnO hollow spheres (HS) were successfully fabricated for application in quantum dot sensitized solar cells (QDSSCs) based on ZnO HS through the ion-exchange process. The sizes of the ZnxCd1-xSe@ZnO HS could be tuned from ~300 nm to ~800 nm using ZnO HS pre-synthesized by different sizes of carbonaceous spheres as templates. The photovoltaic performance of QDSSCs, especially the short-circuit current density (Jsc), experienced an obvious change when different sizes of ZnxCd1-xSe@ZnO HS are employed. The ZnxCd1-xSe@ZnO HS with an average size distribution of ~500 nm presented a better performance than the QDSSCs based on other sizes of ZnxCd1-xSe@ZnO HS. When using the mixture of ZnxCd1-xSe@ZnO HS with different sizes, the power conversion ef?ciency can be further improved. The size effect of the hollow spheres, light scattering, and composition gradient structure ZnxCd1-xSe@ZnO HS are responsible for the enhancement of the photovoltaic performance.
关键词: zinc oxide,alloyed quantum dots,sensitized solar cells,hollow spheres
更新于2025-11-14 17:04:02
-
Carbon Black and Titanium Interlayers Between Zinc Oxide Photo Electrode and Fluorine-Doped Tin Oxide for Dye-Sensitized Solar Cells
摘要: Carbon black and titanium interlayers were deposited on ?uorine-doped tin oxide (FTO) anode layers using radio frequency magnetron sputtering method. On top of them, Zinc oxide (ZnO) photo anode layers were prepared using plasma enhanced chemical vapor deposition technique. ZnO high binding energy as well as good breakdown strength, cohesion, and stability used as a photo electrode material for dye-sensitized solar cells (DSSC), but it does not have a good electrical contact to the FTO anode. To solve this problem, the carbon black and titanium interlayers were deposited. The effect of interlayers on the power conversion ef?ciency (PCE) of DSSCs was investigated. The PCE of the devices with 120-nm-thick interlayers of carbon black or titanium was 5.21 or 4.45%, respectively, which were larger than the PCE of the devices without such interlayers (3.25%). The smooth interface of the carbon black interlayer reduced the interface impedance of the ZnO photo anode effectively. On the other hand, the titanium interlayer with TiO2 on the ZnO side increased the impedance, and decreased the PCE.
关键词: Fluorine-Doped Tin Oxide,Titanium,Carbon Black,Dye-Sensitized Solar Cells
更新于2025-11-14 17:04:02
-
Electron Transport Improvement of Perovskite Solar Cell via ZIF-8 Derived Porous Carbon Skeleton
摘要: To improve electron transport rate of perovskite solar cell, ZIF-8 derived porous carbon skeleton layer is prepared by carbonizing the ZIF-8 thin film on conducting glass as the electron transport skeleton of perovskite solar cell. Polyvinyl pyrrolidone is added during the synthesis of ZIF-8 to reduce the particle size of ZIF-8 and decrease the carbonization temperature below 600°C. The porous structure of ZIF-8 is mainly reserved at the optimized carbonization temperature. Then TiO2 nanoparticles are deposited on the surface of porous carbon skeleton to form an electron transport layer of perovskite solar cell with the structure of FTO/ZIF-8 derived porous carbon layer/TiO2/Perovskite/Spiro-OMeTAD/Au. Due to the good conductivity of the ZIF-8 derived porous carbon skeleton, the photogenerated electron transport rate of perovskite solar cell is increased. At the same time, the porous structure of ZIF-8 derived carbon layer increases the contact area between the perovskite layer and the TiO2 layer to favor separation of photogenerated charges. Therefore, the light-to-electric conversion efficiency of CH3NH3PbI3 perovskite solar cell is enhanced from 14.25% to 17.32%.
关键词: Electron transport,Increase of contact area,Porous carbon skeleton,Good conductivity,Polyvinyl pyrrolidone,Perovskite solar cell,Metal organic frameworks
更新于2025-11-14 17:04:02
-
Synthesis of porous NiMo sulphide microspheres for high-Performance dye-sensitized solar cells and supercapacitor
摘要: Novel hierarchical porous NiMoS4 microspheres with high electrochemical performance was successfully prepared using a facile one-step hydrothermal method. The dual application of porous NiMoS4 microspheres in energy harvesting and storage (ie, dye-sensitized solar cells (DSSCs) and supercapacitors (SCs) respectively) is explored. In contrast to NiS2 nanosheets, MoS2 nanosheets and Pt counter electrodes (CEs), the NiMoS4 microspheres CE demonstrated the lowest charge transfer resistance and highest electrocatalytic activity for the I3?/I? redox couple reaction. The NiMoS4-based DSSC showed a high power conversion efficiency (8.9%) even than that of Pt-based DSSC (8.7%) under simulated standard global AM 1.5G sunlight (100 mW cm?2). As an electroactive material for SCs, the assembled NiMoS4//AC asymmetric supercapacitor showed excellent specific capacitance (118.7 F g?1 at 1 A g?1), high energy density of 42.2 Wh kg?1 (with a power density of 799.2 W kg?1), and superior cycling durability with a specific capacitance retention of 79.5% after 9000 cycles at 3 A g?1.
关键词: Asymmetric supercapacitor,Ni-Mo sulfide,Microspheres,Dye-sensitized solar cells
更新于2025-11-14 17:04:02
-
Efficient Dye-Sensitized Solar Cells Composed of Nanostructural ZnO Doped with Ti
摘要: Photoanode materials with optimized particle sizes, excellent surface area and dye loading capability are preferred in good-performance dye sensitized solar cells. Herein, we report on an efficient dye-sensitized mesoporous photoanode of Ti doped zinc oxide (Ti-ZnO) through a facile hydrothermal method. The crystallinity, morphology, surface area, optical and electrochemical properties of the Ti-ZnO were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and X-ray diffraction. It was observed that Ti-ZnO nanoparticles with a high surface area of 131.85 m2 g?1 and a controlled band gap, exhibited considerably increased light harvesting efficiency, dye loading capability, and achieved comparable solar cell performance at a typical nanocrystalline ZnO photoanode.
关键词: bandgap energy,dye-sensitized solar cell,photovoltaic performance,Ti doped ZnO
更新于2025-11-14 17:04:02
-
Synthesis of CoNi bimetallic alloy nanoparticles wrapped in nitrogen-doped graphite-like carbon shells and their electrocatalytic activity when used in a counter electrode for dye-sensitized solar cells
摘要: Nanoparticles of the bimetallic alloy CoNi wrapped in nitrogen-doped graphite-like carbon shells and dispersed on nitrogen-doped graphite-like carbon sheets (CoxNi1?x@NC) were synthesized by calcining CoNi metal–organic frameworks that were prepared through a facile solvothermal reaction using various raw-material molar ratios Co:Ni and CoNi:ethylenedinitrilotetraacetic acid. After depositing CoxNi1?x@NC for use as a counter electrode film in dye-sensitized solar cells, it was found that the electrocatalytic activity of the CoxNi1?x@NC counter electrode towards triiodide reduction could be optimized by simply tuning the molar ratios (Co:Ni and CoNi:ethylenedinitrilotetraacetic acid) appropriately during CoxNi1?x@NC synthesis. Cells that utilized a CoxNi1?x@NC counter electrode exhibited strong chemical-composition-dependent photovoltaic performance. Under optimal conditions, the CoxNi1?x@NC counter electrode presented an impressive energy conversion efficiency of 3.58%, suggesting that it is a highly promising counter electrode for application in dye-sensitized solar cells. This counter electrode has the advantages that it is considerably less expensive than a Pt counter electrode and that it provides the basis for the design and preparation of other inexpensive and efficient counter electrodes to replace Pt.
关键词: Photovoltaic performance,Dye-sensitized solar cells,CoNi alloy bimetallic nanoparticles,Counter electrode,Electrocatalytic activity
更新于2025-11-14 17:04:02