修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
  • 2014
研究主题
  • solar cell
  • hybrid-resonant PWM switching
  • PWM switching
  • MPPT
  • resonant converter
  • solar power
  • Geostationary satellite images
  • Global and direct solar radiation
  • Meteorological station
  • validation
应用领域
  • Electrical Engineering and Automation
  • New Energy Science and Engineering
  • Optoelectronic Information Science and Engineering
  • Optoelectronic Information Materials and Devices
  • Applied Physics
机构单位
  • National technical University “Kharkiv Polytechnic Institute”
  • University of évora
  • Fraunhofer Institute for Solar Energy Systems ISE
  • University of Tunis El Manar
  • Zeal College of Engineering and Research
  • Northern (Arctic) Federal University named after M.V. Lomonosov
  • Cochin University College of Engineering
  • National Renewable Energy Laboratory
  • NED University
  • Universidad Veracruzana
4089 条数据
?? 中文(中国)
  • Fabrication of peanut-like TiO2 microarchitecture with enhanced surface light trapping and high specific surface area for high-efficiency dye sensitized solar cells

    摘要: The quality of TiO2 photoelectrode is critical to fabricate high-performance dye-sensitized solar cells (DSSCs), but constructing TiO2 microstructure with high exposure reactive facets and high specific surface area is still a challenge. Herein, we present a facile route for creating a novel peanut-like (PN) anatase TiO2 microstructure with high exposed (001) facet, enhanced light trapping and large specific surface area using a one-pot hydrothermal method without fluorion assistance. With the introduction of diethylenetriamine as shape controlling agent and two-phase interface by etherification reaction of isopropyl alcohol, anatase PN TiO2 microarchitecture consisted with ultrathin nanosheets can be successfully fabricated. The obtained PN TiO2 combines the advantages of high exposed reactive (001) facets and large specific surface area (180.8 m2/g). The PN TiO2 based DSSC exhibits an outstanding photovoltaic conversion efficiency up to 9.14%, which can attribute to larger dye loading, superior light scattering capability, higher electron collection efficiency, narrower bandgap as well as efficient electron injection, together with improved electron transport and reduced charge recombination due to the unique peanut-like microstructure. Our work demonstrates the potential of PN TiO2 for improving the performance of energy storage devices.

    关键词: Dye sensitized solar cell,(001) facet,Titanium dioxide,Improved electron transport,Peanut-like structure

    更新于2025-11-14 17:04:02

  • The Size Effect of TiO2 Hollow Microspheres on Photovoltaic Performance of ZnS/CdS Quantum Dots Sensitized Solar Cell

    摘要: Size controllable TiO2 hollow microspheres (HMS) were synthesized by a carbonaceous spheres (CS) template method. Based on TiO2 HMS, the ZnS/CdS quantum dots (QDs) were loaded to form a ZnS/CdS@TiO2 HMS photoanode for quantum dots sensitized solar cell (QDSSC). The size effects of TiO2 HMS on photovoltaic performance were investigated, and showed that TiO2 HMS with sizes ~560 nm produced the best short-circuit current density (Jsc) of 8.02 mA cm?2 and highest power conversion efficiency (PCE) of 1.83%, showing a better photovoltaic performance than any other QDSSCs based on TiO2 HMS with size ~330 nm, ~400 nm, and ~700 nm. The improvement of photovoltaic performance based on ~560 nm TiO2 HMS which can be ascribed to the enhanced light harvesting efficiency caused by multiple light reflection and strong light scattering of TiO2 HMS. The ultraviolet-visible (UV-vis) spectra and incident photo to the current conversion efficiency (IPCE) test results confirmed that the size of TiO2 HMS has an obvious effect on light harvesting efficiency. A further application of ~560 nm TiO2 HMS in ZnS/PbS/CdS QDSSC can improve the PCE to 2.73%, showing that TiO2 HMS has wide applicability in the design of QDSSCs.

    关键词: titanium dioxide,quantum dots sensitized solar cells,hollow microspheres

    更新于2025-11-14 17:04:02

  • Design of Mn-doped CdxZn1-xSe@ZnO triple-shelled hollow microspheres for quantum dots sensitized solar cells with improved photovoltaic performance

    摘要: Mn-CdxZn1-xSe@ZnO multi-shelled (including single-shelled, double-shelled, and triple-shelled) hollow microspheres (HMS) were successfully synthesized for application in quantum dots sensitized solar cell (QDSSC). The influence of shell numbers on photovoltaic performance of QDSSC were investigated. The results showed that larger surface area, repeated light reflection and reinforced light scattering can be achieved with triple-shelled HMS, which can improve light harvesting efficiency. Furthermore, midgap state created by Mn-doping in CdxZn1-xSe will facilitate electrons injection and collection from excited CdxZn1-xSe quantum dots (QDs) to ZnO. The multi-shelled effects and Mn-doping finally improve the short-circuit current (Jsc) of Mn-CdxZn1-xSe@ZnO tripled-shelled HMS solar cell to 20.21 mA cm?2, leading to the power conversion efficiency significantly enhanced to 3.39%.

    关键词: Zinc oxide,Solar cells,Quantum dots,Hollow microspheres

    更新于2025-11-14 17:04:02

  • In situ synthesis of ternary nickel iron selenides with high performance applied in dye-sensitized solar cells

    摘要: Comparing with the binary chalcogenides, the ternary chalcogenides may achieve higher electrical conductivity and electrochemical activity due to the synergistic effect of the different metal cations. Herein, ternary nickel iron selenide (Ni0.5Fe0.5Se2) was fabricated through a facile one-pot solvothermal method with the assistance of glucose for the first time. The dye-sensitized solar cells (DSSCs) were assembled with the as-prepared Ni0.5Fe0.5Se2 as counter electrode (CE). Electrochemical measurements indicated that the Ni0.5Fe0.5Se2 possessed small electron transfer resistance at the interface between electrode and electrolyte, great electrocatalytic activity and reaction kinetics toward the reduction of triiodide. Compared with conventional Pt CE (7.24%), the DSSCs based on Ni0.5Fe0.5Se2 CE achieved a greater power conversion efficiency of 7.89%. Furthermore, this study provides a new idea and strategy with convenient method to synthesize Pt-free alternative materials.

    关键词: Counter electrode,Solvothermal method,Dye-sensitized solar cells,Ternary nickel iron selenide

    更新于2025-11-14 17:04:02

  • Grafting cobalt sulfide on graphene nanosheets as a counterelectrode for dye-sensitized solar cells

    摘要: In the present work a composite counter electrode of graphene nanosheets grafted cobalt sulfide was fabricated through a facile synthetic route, in which cobalt sulfide nanoparticles were successfully grafted on the surface of graphene nanosheets. Used as a counter electrode in DSSC, a power conversion efficiency of 7.28% can be achieved. Such a result might be contributed to the facts that this counter electrode composed of graphene nanosheets grafted cobalt sulfide has a good stability and electrochemical catalytic performance toward triiodide reduction reaction.

    关键词: photovoltaic performance,graphene nanosheets,cobalt sulfide,counterelectrode,Dye-sensitized solar cell

    更新于2025-11-14 17:04:02

  • Preparation of hierarchical flower-like nickel sulfide as hole transporting material for organic solar cells via a one-step solvothermal method

    摘要: In this work, nickel sulfide (NiS) with a mesoporous network was prepared through a simple solvothermal approach. The influences of various contents of the sulfur source on the morphological changes were examined. Finally, the resultant NiS doped with various contents of sulfur were used as hole-transport layers (HTLs) for the application to organic solar cells (OSCs). Based on our knowledge of the implementation of OSCs, NiS-based HTLs are used for the first time in this paper. The OSCs developed with NiS_2.0 (NiS doped with 2.0 g of thioacetamide (sulfur source)) HTL showed a higher PCE response, at 2.28% than those fabricated with NiS_1.0 (NiS doped with 1.0 g of thioacetamide), NiS_1.5, (NiS doped with 1.5 g of thioacetamide), and NiS_2.5 (NiS doped with 2.5 g of thioacetamide), which only showed 1.38%, 1.88%, and 1.96%, respectively. Besides this improved photovoltaic response, it also demonstrated a superior reproducibility with a high degree of control over the environmental stability, i.e., 360 h, as compared to the bare PEDOT:PSS HTL-based OSCs, which showed just 240 h.

    关键词: Stability,Reproducibility,Synthesis,Hole transport layer,Organic solar cells,Hierarchical flower-like nickel sulfide

    更新于2025-11-14 17:04:02

  • A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution

    摘要: Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets, as the promising photocatalyst with fascinating properties, have become a 'rising star' in the field of photocatalysis. Although g-C3N4 nanosheets exfoliated from the bulk g-C3N4 powders are extensively emerged, developing a simple synthetic approach is still full of challenge. To this end, here we report a direct polymerization strategy to fabricate the ultrathin g-C3N4 nanosheets, that is only heating treatment of thiourea in air without addition of any template. The photocatalytic activities of as-prepared samples were evaluated by photoreduction of water to hydrogen (H2) using triethanolamine as sacrificial agent and Pt as co-catalyst under visible-light irradiation (λ > 420 nm). As a result, our few-layered g-C3N4 nanosheets with an average thickness of 3.5 nm exhibit a superior visible-light photocatalytic H2 evolution rate (HER) of 1391 μmol g?1 h?1 and a remarkable apparent quantum efficiency of 6.6% at 420 nm. Eventually, the HER of as-fabricated ultrathin g-C3N4 nanosheets is not only much higher than the dicyandiamide-derived g-C3N4 or melamine-derived g-C3N4, but also greater than the thermal-oxidation etched g-C3N4 nanosheets under the same condition.

    关键词: g-C3N4 nanosheets,Template-free polymerization,Solar energy conversion,2D materials,Photocatalysis,One-step synthesis

    更新于2025-11-14 17:03:37

  • A microfluidic all-vanadium photoelectrochemical cell with the N-doped TiO2 photoanode for enhancing the solar energy storage

    摘要: In this work, the nitrogen-doped TiO2 photocatalyst is synthesized and applied in a microfluidic all-vanadium photoelectrochemical cell for enhancing the solar energy storage. The use of the nitrogen-doped TiO2 photoanode and the minimization design can ensure the visible-light response, increased specific surface area, vigorous pore structure and enhanced photon and mass transport as well as more uniform light distribution. Various characterizations are performed to evaluate the developed photocatalyst and microfluidic all-vanadium photoelectrochemical cell. The results confirm that the developed nitrogen-doped TiO2 photoanode can provide both the extended absorption spectrum and the small anatase crystal size as well as the obviously enlarged specific surface area with plentiful pore structure. Because of these merits, the microfluidic all-vanadium photoelectrochemical cell with the nitrogen-doped TiO2 photoanode yield the average photocurrent density of 0.103 mA/cm2 during the long-term operation, which is much higher than those with the un-doped TiO2 photoanode (0.086 mA/cm2) and commercial P25 TiO2 photoanode (0.073 mA/cm2), presenting 19.8% and 41% improvements, respectively. The results demonstrate not only the promotion of the vanadium reversible redox pairs conversion but also the inherently excellent stability by the nitrogen-doped TiO2 photoanode.

    关键词: Photoanode,N-doped TiO2 photocatalyst,Conversion rate,Microfluidic all-vanadium photoelectrochemical cell,Solar energy storage

    更新于2025-11-14 17:03:37

  • Preparation of CoS<sub>2</sub> counter electrode on Ni sheet for QDSSCs via electrophoretic deposition of ZIF-67

    摘要: To prepare counter electrode with low cost and high catalytic activity is a way to improve photovoltaic performance of quantum dot-sensitized solar cells. Here, ZIF-67 thin films are prepared on Ni sheet and FTO conducting glass substrate by electrophoretic deposition at different applied electric fields, and then CoS2/Ni and CoS2/FTO electrodes are obtained by vulcanizing the ZIF-67 thin films using thioacetamide. The prepared CoS2 thin films are characterized by the measurements of scanning electron microscope, X-ray photoelectron spectroscopy, X-ray powder diffraction and Fourier transform infrared spectra. Further, the CoS2/Ni and CoS2/FTO thin films are used as counter electrodes to fabricate quantum dot-sensitized solar cells. Photocurrent-voltage curves, electrochemical impedance spectroscopies and Tafel curves are measured to evaluate their photoelectrochemical properties. The short-circuit photocurrent value of quantum dot-sensitized solar cell based on the CoS2/Ni counter electrode is significantly improved compared with that of the cell based on the CoS2/FTO, and thus the light-to-electric conversion efficiency is increased from 1.95% to 3.24%. The enhancement mechanism of electrocatalytic activity and photovoltaic performance of counter electrode prepared on Ni sheet is analyzed to be less resistance of Ni sheet and higher charge transfer rate between counter electrode and electrolyte.

    关键词: Quantum dot-sensitized solar cell,CoS2,Counter electrode,Electrophoretic deposition,Ni sheet

    更新于2025-11-14 17:03:37

  • Preparation of high quality perovskite thin film in ambient air using ethylacetate as anti-solvent

    摘要: Methylamine lead iodide (CH3NH3PbI3) perovskite thin film solar cell has attracted much attention due to its low cost and high photoelectric conversion efficiency. Preparation of high quality perovskite thin film is the key to obtain high conversion efficiency of solar cells. Here, the pinhole-free CH3NH3PbI3 layer with high coverage and smooth surface is prepared by the one-step solution method in air with ethylacetate as anti-solvent on an electron transport hybrid layer of TiO2 nanoparticles coated porous carbon. The effect of ethylacetate as anti-solvent on the quality of perovskite thin film is studied in detail by comparing with chlorobenzene and ethylether. The high saturation and humidity resistance of ethylacetate in air control the nucleation and growing kinetics of perovskite crystals during the spin coating process, which facilitates the formation of uniform pinhole-free perovskite thin films. The perovskite solar cell based on the prepared high quality thin film achieves the highest conversion efficiency of 17.41% in ambient air with a relative humidity of 35%, which is superior to the perovskite thin films prepared with chlorobenzene and ethylether (conversion efficiency of 10.80% and 10.20%). The higher light-to-electric conversion efficiency is due to high coverage of the pinhole-free perovskite thin film and good contact with the electron transport layer and the hole transport layer.

    关键词: Anti-solvent,Perovskite solar cell,Uniform perovskite thin film,Ethylacetate

    更新于2025-11-14 17:03:37