- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The Role of Weak Molecular Dopants in Enhancing the Performance of Solution-Processed Organic Field-Effect Transistors
摘要: Molecular doping is an effective method to enhance the charge carrier density for reducing the contact resistance and improving the charge mobility in organic field-effect transistors (OFETs). Previous reports mainly focus on the strong dopants with the EAdopant > IEOSC (p-type) or IEdopant < EAOSC (n-type) to enable the efficient charge transfer (EA: electron affinity; IE: ionization energy; OSC: organic semiconductor). However, the effects of weak dopants on the OFET performance of OSC are rarely investigated. Thus, in this study, it is demonstrated that two new fluorinated compounds (Tetrafluorophthalonitrile (TFP) and Octafluoronaphthalene (OFN)) can act as weak dopants in thin film of TIPS-Pentacene (TIPS). Although they exhibit unmatched EAs (3.45 eV for TFP and 3.44 eV for OFN) compared to the IE (5.17 eV) of the host TIPS, they still can fulfill the p-type doping with the OSC matrix. Systematic structural and electrical characterization reveals the important role of the formed charge-transfer interaction and the improved crystallinity in enhancing the carrier mobility. The doped poly(3-hexylthiophene) is also investigated to confirm the universality of the weak dopants. The study should provide a new thought for the exploitation of novel planar soluble weak dopants in OFETs.
关键词: solution-processed organic field-effect transistors,molecular doping,weak dopants
更新于2025-09-09 09:28:46