- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
CuInS <sub/>2</sub> -Doped ZnS Quantum Dots Obtained via Non-Injection Cation Exchange Show Reduced but Heterogeneous Blinking and Provide Insights into Their Structurea??Optical Property Relationships
摘要: Cadmium-free CuInS2-doped ZnS quantum dots (QDs) are synthesized through a 2-step non-injection synthetic method. The resulting QDs are small (8 nm or less) and relatively isotropic with photoluminescence quantum yields (PL QY) up to almost 70% and emission peaks in the 560-600 nm window, depending on the amount of Zn precursor added. The results indicate small CuInS2 ‘clusters’ within a zinc-blende ZnS lattice are the radiative recombination centers in the nanoparticle. Interestingly, higher ensemble photoluminescence quantum yields (PL QY) result when cation exchange is less extensive (~80 % ZnS composition), while a reduction in blinking is observed when ZnS composition exceeds 99%. A wide heterogeneity in blinking behavior from QD-to-QD is evident and a subpopulation statistical analysis shows that the on-state dwell times change from multiexponential (or inverse power law) behavior towards more mono-exponential behavior for particles that spend more of their time in the on-state. These results indicate that, as the number of CuInS2 emitting centers is reduced, the number of pathways leading to the off-state decreases, and a model is proposed to relate this behavior to the QD structure. These results provide a novel route towards CuInS2-doped visible-light emitting ZnS QDs with high quantum yield and reduced blinking and provides insight into how the composition of dopant and host matrix affects the radiative recombination mechanisms in single particles.
关键词: non-injection cation exchange,CuInS2-doped ZnS,blinking,structure-optical property relationships,quantum dots
更新于2025-09-23 15:19:57