- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The Effect of Crystallographic Orientation and Nanoscale Surface Morphology on <i>Poly</i> -Si/SiO <i> <sub/>x</sub></i> Contacts for Silicon Solar Cells
摘要: High-efficiency crystalline silicon (Si) solar cells require textured surfaces for efficient light trapping. However, passivation of a textured surface to reduce carrier recombination is difficult. Here, we relate the electrical properties of cells fabricated on a KOH-etched, random pyramidal textured Si surface to the nanostructure of the passivated contact and the textured surface morphology. The effects of both microscopic pyramidal morphology and nanoscale surface roughness on passivated contacts consisting of a polycrystalline Si (poly-Si) deposited on top of an ultrathin, 1.5–2.2 nm, SiOx layer is investigated. Using atomic force microscopy we show a pyramid face, which is predominantly a Si(111) plane to be significantly rougher than a polished Si(111) surface. This roughness results in a nonuniform SiOx layer as determined by transmission electron microscopy (TEM) of a poly-Si/SiOx contact. Our device measurements also show an overall more resistive, and hence thicker SiOx layer over the pyramidal surface as compared to a polished Si(111) surface, which we relate to increased roughness. Using electron-beam-induced current measurements of poly-Si/SiOx contacts we further show that the SiOx layer near the pyramid valleys is preferentially more conducting, and hence likely thinner than over pyramid tips, edges and faces. Hence, both the microscopic pyramidal morphology and nanoscale roughness lead to nonuniform SiOx layer, thus leading to poor poly-Si/SiOx contact passivation. Finally, we report >21% efficient and ≥80% fill-factor front/back poly-Si/SiOx solar cells on both single-side and double-side textured wafers without the use of transparent conductive oxide layers and show that the poorer contact passivation on a textured surface is limited to boron-doped poly-Si/SiOx contacts.
关键词: passivated contact,tunneling,silicon oxide,electron beam induced current,silicon solar cell,surface orientation,atomic force microscopy
更新于2025-09-19 17:13:59
-
Combined SERS/DFT studies of push–pull chromophore self-assembled monolayers: insights into their surface orientation
摘要: Having clear and deep information on the surface/interface of deposited molecules is of crucial importance for the development of efficient optoelectronic devices. This paper reports on a joint experimental/theoretical hybrid approach based on Raman spectroscopy in order to provide information on the orientation of push–pull chromophores deposited onto a gold surface. In addition, several parameters can strongly control or impede the orientation of such molecules on the surface such as: the molecular structure, the surface itself, the method of deposition and the solvents used. From this approach, additional information has been highlighted such as perpendicularly depositing the molecule on the surface, the bithiophene compounds displaying more solvent effects compared to terthiophene molecules and so on. According to the results, the joint SERS/DFT study proves to be an effective tool for probing the arrangement of push–pull chromophores and selecting the right experimental conditions to tune the surface properties.
关键词: SERS,DFT,push–pull chromophores,surface orientation,self-assembled monolayers
更新于2025-09-12 10:27:22