- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modeling and performance optimization
摘要: In the present work, a comprehensive thermodynamic and exergoeconomic comparison between concentrated photovoltaic-thermoelectric cooling (CPV-TEC) and concentrated photovoltaic-thermoelectric generation (CPV-TEG) systems was introduced and explored, aiming to actively investigate the energy harvesting potential of the photoelectric-thermoelectric cooling and power generation processes. Transitional characteristics of thermoelectric conversion in concentrated photovoltaic-thermoelectric hybrid (CPV-TEH) system have been outlined through multiple evaluation indicators, including output electricity, cell temperature, thermodynamic efficiency, exergy destruction and unit exergy cost under various decision parameters. Furthermore, operating mode and conversion conditions of thermoelectric device in CPV-TEH system have been sensitively identified to obtain the dual action mechanism of cooling and power generation sequentially. Theoretical models have been compared and validated well with former published results. Results indicate that the operating mode of thermoelectric device could be fully converted from TEG to TEC when the operating current is around 0.27 A; the minimum unit exergy costs are respectively found to be 0.263 $/kwh, 0.148 $/kwh and 0.113 $/kwh for CPV-TEG system and 0.266 $/kwh, 0.152 $/kwh and 0.118 $/kwh for CPV-TEC system at CG = 1, 2, and 3 kW/m2. Present research may be helpful for the design and optimization of the CPV-TEH system to harvest the thermal and electric energy from the sunlight, thus enhancing its energy conversion efficiency.
关键词: Photovoltaic-thermoelectric system,Refrigeration and power generation,Thermodynamic and exergoeconomic comparisons,Dual action mechanism
更新于2025-09-19 17:13:59
-
Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system
摘要: This work presents, for the first time, a statistical model to forecast the electrical efficiency of concentrated photovoltaic-thermoelectric system (CPV-TE). The main objective of this work is to analyze the impact of the input factors (product of solar radiation and optical concentration, external load resistance, leg height of TE and ambient temperature) most affecting the electrical efficiency of CPV-TE system. An innovative and integrated approach based on a multi-physics numerical model coupling radiative, conductive and convective heat transfers Seebeck and photoelectrical conversion physical phenomena inside the CPV-TE collector and a response surface methodology (RSM) model was developed. COMSOL 5.4 Multiphysics software is used to perform the three-dimensional numerical study based on finite element method. Furthermore, results from the numerical model is then analysed using the statistical tool, response surface methodology. The analysis of variance (ANOVA) is conducted to develop the quadratic regression model and examine the statistical significance of each input factor. The results reveal that the obtained determination coefficient for electrical efficiency is 0.9945. An excellent fitting is achieved between forecast values obtained from the statistical model and the numerical data provided by the three-dimensional numerical model. The influence of the parameters in order of importance on the electrical efficiency are respectively: product of solar radiation and optical concentration, the height legs of TE, external electrical resistance load, and ambient temperature. A simple polynomial statistical model is created in this work to predict and maximize the electrical efficiency from the solar CPV-TE system based on the four investigated input parameters. The maximum electrical efficiency of the proposed CPVTE (17.448%) is obtained for optimum operating parameters at 229.698 W/m2 value of product of solar radiation and optical concentration, 303.353 K value of ambient temperature, 2.681Ω value of resistance electrical load and at 3.083 mm value of height of TE module.
关键词: Concentrated photovoltaic-thermoelectric system (CPV-TE),Electrical efficiency enhancement,Response surface methodology (RSM)
更新于2025-09-19 17:13:59
-
Demonstrating the benefits of thermoelectric‐coupled solar PV system in microgrid challenging conventional integration issues of renewable resources
摘要: Incorporation of solar photovoltaic (SPV) and thermoelectric (TE), termed as solar photovoltaic‐thermoelectric (SPV‐TE) hybrid system, is found be a very promising technique in widening the utilization of solar spectrum and improving the power yield viably cum‐proficiently. This hybrid architecture caters thermal energy, which signifies upon electrical energy with additional harnessing of solar insolation in an exceptional way. The implementation of the aforementioned system in microgrid (MG) leads to procurement of higher active power and comparably lesser reactive power to the system. Many non-conventional energy sources have been implemented for power generation in MG in spite of their instability and reconciliation issues. This article portrays upon the main concern of implementing only SPV‐TE system in MG by considering two systems to analyze and compare. Those two systems, ie, SPV‐wind energy system (SPV‐WES)/fuel cell technology (FCT) and SPV‐thermoelectric generator (SPV‐TEG)‐WES/FCT, were analyzed and validated over the employment of only the SPV‐TEG system. For WES and FCT, the proposed system delivers higher active power near about 20% to 70% over the conventional MG and the TEG‐integrated MG; 21% to 52% lesser reactive power is absorbed over the conventional MG and 7% to 17% higher reactive power is absorbed over the TEG‐integrated MG. This, thus, brings about the lesser multifaceted nature in source incorporation and moderating the cons of coordinating WES and FCT, considering all its application. The proposed replaceable SPV‐TEG framework in MG is observed to exceed expectations over the two frameworks offering ascend to a noteworthy leap forward in advancement of SPV. The whole system was studied, analyzed, and validated in MATLAB/Simulink environment.
关键词: active power,progress in solar photovoltaics,reactive power,SPV‐TEG hybrid system,thermoelectric system,solar photovoltaics,renewable resources,microgrid
更新于2025-09-12 10:27:22