修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Rhenium Diselenide (ReSe <sub/>2</sub> ) Near‐Infrared Photodetector: Performance Enhancement by Selective p‐Doping Technique

    摘要: In this study, a near-infrared photodetector featuring a high photoresponsivity and a short photoresponse time is demonstrated, which is fabricated on rhenium diselenide (ReSe2) with a relatively narrow bandgap (0.9–1.0 eV) compared to conventional transition-metal dichalcogenides (TMDs). The excellent photo and temporal responses, which generally show a trade-off relation, are achieved simultaneously by applying a p-doping technique based on hydrochloric acid (HCl) to a selected ReSe2 region. Because the p-doping of ReSe2 originates from the charge transfer from un-ionized Cl molecules in the HCl to the ReSe2 surface, by adjusting the concentration of the HCl solution from 0.1 to 10 m, the doping concentration of the ReSe2 is controlled between 3.64 × 1010 and 3.61 × 1011 cm?2. Especially, the application of the selective HCl doping technique to the ReSe2 photodetector increases the photoresponsivity from 79.99 to 1.93 × 103 A W?1, and it also enhances the rise and decay times from 10.5 to 1.4 ms and from 291 to 3.1 ms, respectively, compared with the undoped ReSe2 device. The proposed selective p-doping technique and its fundamental analysis will provide a scientific foundation for implementing high-performance TMD-based electronic and optoelectronic devices.

    关键词: photodetector,transition-metal dichalcogenides (TMDs),p-doping,selective doping,HCl doping,ReSe2,transistor

    更新于2025-09-11 14:15:04

  • Flakes Size-Dependent Optical and Electrochemical Properties of MoS2

    摘要: Background: Molybdenum disulfide (MoS2) is a transition metal dichalcogenides and has some interesting and promising properties. MoS2 has direct and indirect band gaps depending on its crystalline structure. In addition, its sheets morphology makes it a good candidate for supercapacitor applications. Objective: The aim of this work is to study the effect of MoS2 flakes size on its optical and electrochemical properties. Method: MoS2 with different flakes sizes were prepared by exfoliation method. The exfoliation was performed by sonication of MoS2 powder in N,N-Dimethylformamide followed by different centrifugation speeds. UV-Vis spectra illustrated the optical energy gap was inversely proportional to the MoS2 flakes size. Results: Absorption coefficient values indicated that the exfoliation reduced the number of layers. Symmetric supercapacitor was made from two MoS2 electrodes and tested in 6 M KOH electrolyte. The specific capacitance was found to be dramatically increased with decreasing flakes size (9.5 and 4.5 mF/cm2 for 0.26 and 0.98 μm flakes size, respectively). Conclusion: These findings recommend that MoS2 can be the excellent electrode material for supercapacitor.

    关键词: nanoflakes,cyclic voltammetry,supercapacitors,Transition Metal Dichalcogenides (TMDs),optical band gap,Molybdenum disulfide

    更新于2025-09-10 09:29:36

  • Polyphenol-Assisted Exfoliation of Transition Metal Dichalcogenides into Nanosheets as Photothermal Nanocarriers for Enhanced Antibiofilm Activity

    摘要: Transition metal dichalcogenides (TMDs) nanosheets have evoked enormous research enthusiasm and have shown increased potentials in biomedical field. However, a great challenge lies in high-throughput, large-scale and eco-friendly preparation of TMDs nanosheets dispersions with high quality. Herein, we report a universal polyphenol-assisted strategy to facilely exfoliate various TMDs into monolayer or few-layer nanosheets. By optimizing the exfoliation condition of molybdenum disulfide (MoS2), the yield and concentration of as-exfoliated nanosheets is up to 60.5% and 1.21 mg/mL, respectively. This is the most efficient aqueous exfoliation method at present and is versatile for the choices of polyphenols and TMDs nanomaterials. The as-exfoliated MoS2 nanosheets possess superior biomedical stability as nanocarriers to load antibiotic drug. They show high photothermal conversion effect and thus induce a synergetic effect of chemotherapy and photothermal therapy to harvest enhanced antibiofilm activity under near-infrared (NIR) light. All these results offer an appealing strategy toward the synthesis and application of ultrathin TMDs nanosheets, with great implications for their development.

    关键词: monolayer nanosheets,aqueous exfoliation,photothermal nanocarrier,transition metal dichalcogenides (TMDs),antibiofilm activity

    更新于2025-09-10 09:29:36