- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals
摘要: Colloidal lead halide perovskite nanocrystals (NCs) have recently emerged as versatile photonic sources. Their processing and luminescent properties are challenged by the lability of their surfaces, i.e. the interface of the NC core and the ligand shell. On the example of CsPbBr3 NCs, we model the nanocrystal surface structure and its effect on the emergence of trap states using density functional theory. We rationalize the typical observation of a degraded luminescence upon aging or the luminescence recovery upon post-synthesis surface treatments. The conclusions are corroborated by the elemental analysis. We then propose a strategy for healing the surface trap states and for improving the colloidal stability by the combined treatment with didodecyldimethyl ammonium bromide and lead bromide and validate this approach experimentally. This simple procedure results in robust colloids, which are both highly pure and exhibit high photoluminescence quantum yields of up to 95-98%, retained even after 3-4 rounds of washing.
关键词: trap states,didodecyldimethyl ammonium bromide,luminescence recovery,photoluminescence quantum yields,lead bromide,CsPbBr3 NCs,density functional theory,Colloidal lead halide perovskite nanocrystals,surface structure
更新于2025-09-09 09:28:46
-
Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air
摘要: All-inorganic cesium lead halide perovskites have been emerging as the promising semiconductor materials for next-generation optoelectronics. However, the fundamental question of how the environmental atmosphere affects their photophysical properties, which is closely related to the practical applications, remains elusive. Here, we report the dynamic switching between radiative exciton recombination and non-radiative carrier trapping in CsPbBr3 by controlling the atmospheric conditions. Specifically, we show that the photoluminescence (PL) intensity from the CsPbBr3 crystals can be boosted by ~ 60 times by changing the surrounding from vacuum to air. Based on the comprehensive optical characterization, near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) as well as density functional theory (DFT) calculations, we unravel that the physisorption of oxygen molecules, which repairs the trap states by passivating the PL-quenching bromine vacancies, is accountable for the enhanced PL in air. These results are helpful for better understanding the optical properties of all-inorganic perovskites.
关键词: trap states,bromine vacancies,oxygen physisorption,photoluminescence,all-inorganic cesium lead halide perovskites
更新于2025-09-09 09:28:46