修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Determining the Waveguide Profile using the Overlap Integral

DOI:10.1109/cleoe-eqec.2019.8872199 出版年份:2019 更新时间:2025-09-11 14:15:04
摘要: The determination of the index pro?le in guiding structures is a central problem in applied photonics, ranging from optical ?bers to femtosecond-written waveguides. A non-destructive and relatively easy method consists in the measurement of the index pro?le by measuring the transmitted ?eld. From the transmitted ?eld, the refractive index pro?le is computed by direct inversion of the Helmholtz equation. This technique is called near-?eld method. Here we present a new near-?eld method based upon the inversion of the overlap integral. From the waveguide theory, the power coupled to the m-th mode with pro?le ψm(x) from an input Ein(x) is am = (cid:2) Ein(x)ψ ? (x)dx. If the input Ein(x) is shifted by an amount x0, the overlap am(x0) is the convolution between the pro?le of the input beam Ein and the mode pro?le ψm. The convolution operator implicitly ?lters out the noise, but without creating distorsions or artifacts. An experimental measurement of the transmitted ?eld Eexp will be Nη, where η is a white Gaussian noise and N the noise amplitude. In the previous formulae P is the overall power given by |am(x0)|2. If both amplitude and phase of the transmitted ?eld are simultaneously measured, the overlap am can be inverted for any guided mode m. If only the intensity is measured, the overlap can be inverted only if the waveguide is monomodal. An example of the reconstructed mode in the case of intensity-only measurements is plotted in Fig. 1(a) for ψ0 = cosh(x/w) with w/λ = 4 and N/P = 1 × 10?4. The retrieved ?eld is very close to the exact one, with appreciable differences only for |x/λ | > 10. Important to stress, this range is larger than what it is achievable with a single direct measurement of the transmitted ?eld. The next step is to invert the Helmholtz equation, that is, to compute the second derivative of the retrieved mode. Direct application of the inversion protocol strongly enhances the noise, above all on the tails of the mode. The net result is the appearance of several fake oscillations, even where the retrieval of the mode is good. The problem can be overcome by ?tting the mode tails with a decaying exponential, in accordance with the waveguide theory. The reconstructed guide pro?les shown in Fig. 1(b) do not present arti?cial oscillations on the tails, showing a 10% error with respect to the original waveguide, the error depending slightly on the original signal-to-noise ratio N/P.
作者: Alessandro Alberucci,Chandroth P. Jisha,Stefan Nolte
AI智能分析
纠错
研究概述 实验方案

Investigating a new near-field method based on the inversion of the overlap integral for determining the refractive index distribution of waveguides.

The study introduces a new technique to determine the refractive index distribution of waveguides by shifting the input excitation and using deconvolution techniques on the overlap. The waveguide profile is accurately reconstructed by fitting the mode tails with a decaying exponential, showing a 10% error with respect to the original waveguide. This method finds direct applications in investigating index profiles of femtosecond-written waveguides.

The method's accuracy is affected by the signal-to-noise ratio, and direct application of the inversion protocol can enhance noise, especially on the tails of the mode. The technique requires simultaneous measurement of both amplitude and phase of the transmitted field for multimodal waveguides.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕担视糜诓牧峡蒲?、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“ [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Determining the Waveguide Profile using the Overlap Integral”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期