修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Do Infrared Molecular Fingerprints of Individuals Exist? Lessons from Spectroscopic Analysis of Human Blood

DOI:10.1109/cleoe-eqec.2019.8871555 出版年份:2019 更新时间:2025-09-12 10:27:22
摘要: Genetic, lifestyle and environmental factors, along with development and aging impact molecular composition of human blood. Although many diseases leave their trace in blood, the question is whether this trace can be robustly and reproducibly measured and used for health monitoring of a given adult population. Infrared molecular spectra of blood serum can be obtained in a non-invasive, time- and cost-efficient manner, delivering molecular information from all molecular species within the highly complex samples. We demonstrate that broadband infrared spectroscopy can be used for reproducible molecular fingerprinting of human blood. To evaluate whether certain medium is sufficiently robust to facilitate detection of disease onset, the quantitative extent of variability of a person as well as a reference population needs to be evaluated. If within-person variability would exceed that of the between-personal variability in a reference population, the approach would not be suited for disease detection. To assess the extent of uniqueness of infrared molecular fingerprints as well as their biological variability, we performed a comprehensive prospective longitudinal study collecting blood samples of 27 healthy individuals donating blood at 8 consequent intervals. We apply broadband infrared molecular fingerprinting by Fourier transform infrared spectroscopy (FTIR) and analyse between-person and within-person variability based on all different molecular classes in the blood simultaneously. We report experimental evidence of the feasibility of identifying a person within a group of individuals based on her/his infrared molecular fingerprint, similarly to metabolic fingerprints [1]. In a first step, using standard methods for descriptive analysis we observe that the between-person variability is larger than the within-person variability by a factor of 3 (Fig.1 Left). This observation opens up the possibility for disease detection. In a second step, we combine standard dimensionality-reduction methods, such as principal component analysis (PCA), and several high-accuracy machine-learning algorithms [1] (random forests, extreme gradient boosting, k nearest neighbours) for deriving classification rules, which we then use for making predictions on test sets of unseen data. For a group of 7 donations that span a period of 6 weeks, we reach peak classification accuracy of above 95% (Fig.1 Right), while the accuracy of a classifier predicting in random would have been as low as 3.7%. In addition, we evaluate the underlying spectral features with respect to their importance on signalling separation and in this way identifying the human blood serum constituents associated with between-person variation. Observed robustness of infrared molecular fingerprints suggests their applicability for health and treatment monitoring.
作者: Kosmas V. Kepesidis,Marinus Huber,Liudmila Voronina,Ma?a Bo?i?,Michael Trubetskov,Ferenc Krausz,Mihaela Zigman
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the feasibility of using infrared molecular fingerprints of human blood for health and treatment monitoring.

The study demonstrates the feasibility of identifying individuals based on their infrared molecular fingerprints and suggests the applicability of this method for health and treatment monitoring. The robustness of infrared molecular fingerprints opens up possibilities for disease detection.

The study was limited to 27 healthy individuals, and the applicability of the method for disease detection in a broader population needs further validation.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能模块化扫描电子显微镜,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“ [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Do Infrared Molecular Fingerprints of Individuals Exist? Lessons from Spectroscopic Analysis of Human Blood”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期