修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Adjustable Optical Path Length Compact Spherical Mirrors Multipass Cell Optimized with Genetic Algorithm

DOI:10.1109/cleoe-eqec.2019.8872747 出版年份:2019 更新时间:2025-09-12 10:27:22
摘要: Numerous practical applications, including health and environmental protection, need compact and high sensitivity gas sensors. This work reports an experimental investigation on a compact multipass cell (MPC) designed and optimized with a genetic algorithm (GA) with long, adjustable optical path length (OPL) using only inexpensive spherical mirrors. A four-mirror based MPC with the GA developed here, offers great design flexibility in comparison to a two-mirror solution. As an example, a stable 24 m OPL was reached within only 80 cc volume. Moreover, by changing the mirror positions various stable OPLs can be achieved in a controllable way. The presented MPC consists of four mirrors in a configuration similar to a bow-tie. As a result, the symmetry between the mirrors is broken (mirrors are not parallel to each other) and an astigmatic spot pattern with a high fill factor is obtained. Additionally, the use of the folded optical path geometry causes higher compactness in contrast to an astigmatic mirror-based MPC. Compared to other dense-pattern or folded spherical mirrors MPCs reported previously, longer OPL in the same volume can be obtained. In order to accurately calculate the line-sphere intersection points and reflection angles based on algorithms reported in custom ray tracing software was developed. It also allows to determine the optimal MPC configuration with specified design constraints (mirror diameters, their focal lengths and desirable OPL) by using a GA. To verify the simulation results, we assembled a MPC with four 1” in diameter, 25 mm focal length mirrors mounted in kinematic holders and fixed them to an aluminum base. By changing the angle and distance between the mirrors, different MPC configurations were tested. Several OPLs ranging from 4.5 m to 28 m were achieved with the GA. The longest OPL, with sufficient output beam quality for such mirrors, was 24 m. In order to prove the agreement between the simulation and experiment, a 16 m and 24 m OPL configurations were prepared and the time-of-flight inside the MPC was measured by injecting a 10 ns pulse laser into the cavity. The first pulse (registered at 0 ns delay in Fig. 1c) corresponds to light partially reflected from the optical plate situated near the MPC input, whereas the second one arrives from the output of MPC. By measuring the time delay between both pulses, the actual OPL was calculated. The experimentally obtained OPLs were 16.11 m and 23.88 m, which is in good agreement with the simulated values of 16.1 m and 23.82 m respectively. In conclusion, we present a compact, four-mirror MPC, designed and optimized with a GA in several OPL variants. Then two of them were experimentally verified through time-of-flight measurement inside the MPC.
作者: Arkadiusz Hudzikowski,Aleksander G?uszek,Karol Krzempek,Jaros?aw Sotor
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the design and optimization of a compact multipass cell (MPC) using a genetic algorithm (GA) for adjustable optical path length (OPL) with spherical mirrors for high sensitivity gas sensors.

The study successfully designed and optimized a compact, four-mirror MPC using a genetic algorithm (GA) for adjustable optical path length (OPL) with spherical mirrors. The experimental results showed good agreement with the simulated values, demonstrating the effectiveness of the GA in optimizing the MPC design.

The study is limited to the use of spherical mirrors and the specific configuration of the MPC. The compactness and design flexibility may vary with different mirror types and configurations.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕担视糜诓牧峡蒲?、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“ [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Adjustable Optical Path Length Compact Spherical Mirrors Multipass Cell Optimized with Genetic Algorithm”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期