- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Lateral ordering of PTCDA on the clean and the oxygen pre-covered Cu(100) surface investigated by scanning tunneling microscopy and low energy electron diffraction
摘要: We have investigated the adsorption of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) on the clean and on the oxygen pre-covered Cu(100) surface [referred to as (√2 × 2√2)R45° – 2O/Cu(100)] by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Our results confirm the (4√2 × 5√2)R45° superstructure of PTCDA/Cu(100) reported by A. Schmidt et al. [J. Phys. Chem. 1995, 99,11770–11779]. However, contrary to Schmidt et al., we have no indication for a dissociation of the PTCDA upon adsorption, and we propose a detailed structure model with two intact PTCDA molecules within the unit cell. Domains of high lateral order are obtained, if the deposition is performed at 400 K. For deposition at room temperature, a significant density of nucleation defects is found pointing to a strong interaction of PTCDA with Cu(100). Quite differently, after preadsorption of oxygen and formation of the (√2 × 2√2)R45° – 2O/Cu(100) superstructure on Cu(100), PTCDA forms an incommensurate monolayer with a structure that corresponds well to that of PTCDA bulk lattice planes.
关键词: PTCDA,STM,template,thin organic films,LEED,Cu(100)
更新于2025-09-04 15:30:14
-
Layer-by-Layer Graphene Growth on <i>β</i> -SiC/Si(001)
摘要: The mechanism of few-layer graphene growth on the technologically-relevant cubic-SiC/Si(001) substrate is uncovered using high-resolution core-level and angle-resolved photoelectron spectroscopy, low-energy electron microscopy, and micro-spot low-energy electron diffraction. The thickness of the graphitic overlayer supported on the silicon carbide substrate and related changes in the surface structure are precisely controlled by monitoring the progress of the surface graphitization in-situ during high-temperature graphene synthesis, using a combination of micro-spectroscopic techniques. The experimental data reveal gradual changes in the preferential graphene lattice orientations at the initial stages of the few-layer graphene growth on SiC(001) and can act as reference data for controllable growth of single-, double-, and triple-layer graphene on silicon carbide substrates.
关键词: LEEM,ARPES,μ-LEED,β-SiC,XPS,nanodomains,graphene
更新于2025-09-04 15:30:14