- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
AIP Conference Proceedings [Author(s) 4TH ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2018 (EGM 2018) - Bandung, Indonesia (27–28 July 2018)] - The enhancement of the corrosion protection of 304 stainless steel using Al2O3 films by PLD method
摘要: The enhancement of the corrosion protection of 304 stainless steel using Al2O3 films by PLD method. In this manuscript, we are using PLD to reduce the corrosion rate of the stainless steel 304 in hydrochloric acid with the concentration of 1 M and the immersion time of 4 minutes at room temperature. This method opens prospects to use the enhanced stainless steel for many electronics and manufacturing applications.
关键词: PLD,corrosion,Al2O3 films,304 stainless steel
更新于2025-09-23 15:23:52
-
Porosity and joint property of laser-MIG hybrid welding joints for 304 stainless steel
摘要: Laser-metal inert gas (MIG) hybrid butt welding was carried out on 5 mm-thick 304 stainless steel to study the influence of parameters on porosity defect, weld formation, and property of the joints. Research reveals that laser-MIG hybrid welding of 304 stainless steel has porosity sensitivity. The effects of welding speed and laser power on porosity and formation of welds were analyzed. Results show that increasing of laser power and decreasing of welding speed are conducive to improve the formation of welds and reduce porosity. Improving the welding speed on the premise of ensuring proper weld formation is of considerable significance, which is recommended to be 1.8 m/min. Based on the fixed welding speed, parameter of laser power optimization is carried out. Results show that tensile strength and elongation of the welded joints reach at least 98.1% and 75.8% of the base metal when laser powers are 4.3 and 5.0 kW. Compared with real-time monitoring and the numerical simulation method, this kind of results-oriented optimization parameter method has engineering guiding significance.
关键词: property,welding parameter,weld formation,304 stainless steel,porosity,laser-MIG hybrid weld
更新于2025-09-23 15:21:01
-
Young’s modulus and fatigue investigation of aluminum nitride films deposited on 304 stainless steel foils using micro-fabricated cantilevers
摘要: Aluminum nitride based (AlN-based) piezoelectric vibration energy harvesters (PVEHs) have been received much attention in the power generation for the device in microelectromechanical systems (MEMS). During the long-time vibration, PVEHs are suffering cyclically dynamic stress. This may result in the defect of the materials, and finally cause the failure of the device. To achieve a reliable design of the device that can work for a long time without failure, the investigation on the mechanical properties of Young’s modulus and fatigue were conducted for AlN films deposited on 304 stainless steel (SUS 304) foils in this study. Two kinds of materials were tested, SUS 304 foils with a thickness of 50 μm (SUS 304 (50 μm)) and a composite material of AlN films deposited on both sides of SUS 304 foils (AlN (1 μm)/ SUS 304 (50 μm)/ AlN (1 μm) structure). The samples were micro-fabricated to cantilevers. Young’s modulus was measured by the micro-cantilever resonance method. The resonant bending fatigue testing method was used to investigate the fatigue properties of the materials. The displacement amplitude of the samples was recorded during the tests. A new criterion by using the change of amplitude versus number of cycles was proposed to define the fatigue life. As results, the Young’s modulus was 184.9 and 342.9 MPa, for SUS 304 foil and AlN film, respectively. Stress-cycle (S-N) curves were plotted by using the proposed criterion successfully. The fatigue strength of SUS 304 foils and the material with AlN/ SUS 304/ AlN structure was estimated to be 294 and 327 MPa, respectively. Fatigue failures of stable crack, intrusions and extrusions, and slip bands, appeared on the surface of SUS 304 foils after the long time vibration. No fatigue failure or surface defect was observed on AlN films.
关键词: 304 stainless steel foil,aluminum nitride film,Young’s modulus,fatigue,micro-fabricated cantilever
更新于2025-09-23 15:21:01
-
Multi Response Optimization of Nd:YAG Laser Micro Drilling Characteristics of 304 Stainless Steel using Desirability Function Approach
摘要: Laser micro drilling is a non-traditional machining process for producing micro hole of various sizes and different angle in many modern industrial application, such as aerospace gas turbine, automobile industry, electronics field etc. Laser drilling is extremely high speed with high aspect ratio. However, the quality and accuracy of the holes can be excellent, if the optimal process parameter has set. It is difficult to achieve exact size of hole as per suggested by the equipment manufacturer without any consideration. So this paper addressed to investigate influence of process parameter on drilling characteristics of 304 stainless steel of 1.5 mm thickness material using Nd:YAG laser drilling through desirability function optimization technique. The effect of process parameter taken during machining operation is average power, nozzle stand-off, nitrogen gas pressure to obtain requisite hole quality. The output responses are entry circularity, exit circularity and taper angle were considered performance criteria for the experimentation. Analysis of variance (ANOVA) has been performed to find out the significant process parameter during the micro drilling process. It is found that nitrogen gas pressure is highly influencing factor on the overall response characteristics, which is about 54.62% and nozzle standoff is 2nd highest influencing parameter, which is about 27.69%.
关键词: 304 Stainless Steel,Laser Drilling Machine,Optimization,Desirability,ANOVA
更新于2025-09-16 10:30:52