修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

308 条数据
?? 中文(中国)
  • Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron

    摘要: The aim of this work was to explore the feasibility of using selective laser sintering (SLS) 3D printing (3DP) to fabricate orodispersable printlets (ODPs) containing ondansetron. Ondansetron was first incorporated into drug‐cyclodextrin complexes and then combined with the filler mannitol. Two 3D printed formulations with different levels of mannitol were prepared and tested, and a commercial ondansetron orally disintegrating tablet (ODT) product (Vonau? Flash) was also investigated for comparison. Both 3D printed formulations disintegrated at ~15 s and released more than 90% of the drug within 5 min independent of the mannitol content; these results were comparable to those obtained with the commercial product. This work demonstrates the potential of SLS 3DP to fabricate orodispersible printlets with characteristics similar to a commercial ODT, but with the added benefit of using a manufacturing technology able to prepare medicines individualized to the patient.

    关键词: additive manufacturing,printing pharmaceuticals,orally disintegrating printlets (ODPs),3D printed drug products,personalized medicines,taste masking,three‐dimensional printing,rapid prototyping,orally disintegrating tablets (ODTs)

    更新于2025-09-19 17:13:59

  • CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness

    摘要: Selective Laser Melting (SLM) was used to realize Co-28Cr-6Mo samples. Several process parameters were considered, resulting in a wide range of Laser Energy Density (LED). The study was focused on the investigation of both process and material-related aspects, such as surface morphology, laser tracks dimension and defects formation mechanisms. In addition, macro (HRC) and microhardness (HV0.5) was assessed. A correlation between LED value and density, surface quality, microstructural features and hardness of SLM parts was defined. The final goal was to identify, for the biomedical Co-28Cr-6Mo alloy, the optimal LED window to be considered in order to maximize the overall quality of SLM parts.

    关键词: Additive Manufacturing (AM),Biomaterial,Selective Laser Melting (SLM),Laser Beam Melting (LBM),Co28Cr6Mo,Co-based alloys

    更新于2025-09-19 17:13:59

  • On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion

    摘要: Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.

    关键词: additive manufacturing,surface roughness,laser powder bed fusion

    更新于2025-09-19 17:13:59

  • The Influence of Selected Selective Laser Sintering Technology Process Parameters on Stress Relaxation, Mass of Models, and Their Surface Texture Quality

    摘要: The article presents the results of research on the impact of basic process parameters of selective laser sintering technology on the mass of the produced models (density of the sintered material—polyamide PA 2200), stress relaxation during compression determined in accordance with the ISO 3384 standard, and geometric surface structure parameters (SGPs). During the tests, the influence of process parameters such as the location of the models on the virtual construction platform (printing direction), the density of the energy supplied to the sintered layer of powder, and the layer thickness of the manufactured material layer was taken into account. The test results confirmed that the process parameters have a significant impact on the density of the model material (in the sintered state), the mechanical properties (stress relaxation during compression), and the quality of the surface texture (SGPs). The most favorable positioning variants of the models on the construction platform were determined. The most favorable thickness variants of the combined layers and the density value of the energy supplied to the sintered powder layer were selected, depending on the expected mass, strength, and SGP quality. In addition, it has been shown that it is possible to build models with reduced mass (>20%), while maintaining satisfactory mechanical and qualitative properties of the surface texture.

    关键词: additive manufacturing technologies,GPS,rapid prototyping,SLS,3D printing,stress relaxation

    更新于2025-09-19 17:13:59

  • Artificial bone scaffolds of coral imitation prepared by selective laser sintering

    摘要: Coralline hydroxyapatite (CHA) has been used in clinical for over 20 years. However, coral is an endanger species and has been banned from mining. In addition, coral artificial bone has slow biodegradation of the defects, hindering the growth of new bone. In order to explore the natural coral artificial bone substitute materials, this work proposed using Selective Laser Sintering (SLS) to fabricate natural calcium carbonate/biopolymer composite imitation coral porous structures, and then the surface of the 3D printing product was transformed into a hydroxyapatite thin layer by hydrothermal conversion reaction. The mechanical properties and porosity were optimized by adjusting the SLS processing parameters including laser power, scanning speed and layer thickness. In the composites with the PLLA of 15 wt%, the SLS processing parameters with the laser power of 15 W, laser scanning speed of 1500 mm/s and single layer thickness of 0.08 mm result in the better mechanical properties. After hydrothermal conversion, the products were confirmed to be a mixture of hydroxyapatite (HA) and calcium carbonate by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). The TGA results revealed that increasing the reaction temperature or prolonging the reaction time can increase the degree of hydrothermal reaction and thus promote the transformation of calcium carbonate into hydroxyapatite. The results of cytotoxicity assay and Life/Dead staining showed that the scaffold is not toxic to L929 cells. This work has the materials system innovation and focuses on the study of the effects of the SLS and hydrothermal processes on the mechanical performance and the degree of hydroxylation. Then, the preparation process of imitation coral artificial bone preparation was optimized. it is concluded that the imitation coral artificial bone is a nontoxic biomaterial; however, further study on its osteogenic capacity should be warranted in the future.

    关键词: Additive manufacturing,Coral imitation,Artificial bones,Selective laser sintering

    更新于2025-09-19 17:13:59

  • Investigation of Inverse Solutions for Tilting Orthogonal Double Prisms in Laser Pointing with Submicroradian Precision

    摘要: This paper reports the design, fabrication, and characterization of arrays of miniaturized, internally fed, polymer electrospray emitters fabricated with stereolithography. The freeform additive manufacturing process used to make the devices has associated two orders of magnitude reduction in the fabrication cost per device and fabrication time (from thousands of dollars to tens of dollars, and from months to hours, respectively) and a two orders of magnitude reduction in the cost of the manufacturing infrastructure (from millions of dollars to tens of thousands of dollars) compared with a silicon MEMS multiplexed electrospray source. The 3-D printed devices include features not easily attainable with other microfabrication methods, e.g., tapered channels and threaded holes. Through the optimization of the fabrication process 10-mm tall, isolated, straight, solid columns with diameter as small as 300 μm, and 12-mm long, straight tubes with inner diameter as small as 400 μm and wall thickness as small as 150 μm were demonstrated. Arrays with as many as 236 internally fed electrospray emitters (236 emitters in 1 cm2) were made, i.e., a twofold increase in emitter density and a sixfold increase in array size compared with the best reported values from multiplexed, internally fed, electrospray sources made of polymer. The characterization of devices with a different array size suggests a uniform emitter operation.

    关键词: electrospray,Additive manufacturing of MEMS,stereolithography,multiplexed liquid ionizers

    更新于2025-09-19 17:13:59

  • Contribution of cellulosic fibre filter on atmosphere moisture content in laser powder bed fusion additive manufacturing

    摘要: Cellulosic materials are commonly used to manufacture the particulate filters used in laser powder bed fusion (LpBf) additive manufacturing (AM) equipment. An experimental approach has been used to calculate the moisture quantity and kinetics of sorption in a cellulosic filter at varying relative humidity (RH) levels. A prediction of the amount of moisture which can be theoretically held within a filter during storage before its use has been obtained. Subsequently, the quantity and the rate of moisture desorption which can be transferred into the build chamber during LpBf is presented. this work highlights the importance of filter storage and conditioning prior to use in additive manufacturing processing.

    关键词: laser powder bed fusion,cellulosic fibre filter,atmosphere moisture content,additive manufacturing

    更新于2025-09-19 17:13:59

  • Laser metal deposition of copper on diverse metals using green laser sources

    摘要: Green laser sources are advantageous in the processing of copper due to the increase of absorptivity compared with more commonly available infrared lasers. Laser metal deposition of copper with a green laser onto various substrate metals namely copper, aluminium, steel and titanium alloy was carried out and observed through high-speed imaging. The effects of process parameters such as laser power, cladding speed and powder feed rate, and material attributes such as absorptivity, surface conditions and thermal conductivity are tied together to explain the size and geometry of the melt pool as well as the fraction of the power used for melting material. The copper substrate has the smallest melt pool with a high angle, followed by aluminium, steel and titanium alloy. The incorporation times for powder grains in the melt pools vary based on the substrate materials. Its dependency on material properties, including surface tension forces, melting temperatures and material density, is discussed. Oxide skins present on melt pools can affect powder incorporation, most significantly on the aluminium substrate. The lower limits of the fraction of power irradiated on the surface used purely for melting were calculated to be 0.73%, 2.94%, 5.95% and 9.78% for the copper, aluminium, steel and titanium alloy substrates, respectively, showing a strong dependence on thermal conductivity of the substrate material. For a copper wall built, the fraction was 2.66%, much higher than a single clad on a copper substrate, due to reduced workpiece heating. The results of this paper can be transferred to other metals with low absorptivity such as gold.

    关键词: Multi-material,DED,High-speed imaging,LMD,Copper,Green 515-nm laser,Laser metal deposition,Powder grain incorporation,Additive manufacturing,Directed energy deposition,Absorptivity

    更新于2025-09-19 17:13:59

  • The role of side-branching in microstructure development in laser powder-bed fusion

    摘要: In-depth understanding of microstructure development is required to fabricate high quality products by additive manufacturing (for example, 3D printing). Here we report the governing role of side-branching in the microstructure development of alloys by laser powder bed fusion. We show that perturbations on the sides of cells (or dendrites) facilitate crystals to change growth direction by side-branching along orthogonal directions in response to changes in local heat flux. While the continuous epitaxial growth is responsible for slender columnar grains confined to the centreline of melt pools, side-branching frequently happening on the sides of melt pools enables crystals to follow drastic changes in thermal gradient across adjacent melt pools, resulting in substantial broadening of grains. The variation of scan pattern can interrupt the vertical columnar microstructure, but promotes both in-layer and out-of-layer side-branching, in particular resulting in the helical growth of microstructure in a chessboard strategy with 67° rotation between layers.

    关键词: microstructure development,additive manufacturing,thermal gradient,side-branching,epitaxial growth,laser powder bed fusion,3D printing

    更新于2025-09-19 17:13:59

  • Technological Feasibility of Lattice Materials by Laser-Based Powder Bed Fusion of A357.0

    摘要: Lattice materials represent one of the utmost applications of additive manufacturing. The promising synergy between additive processes and topology optimization finds full development in achieving components that comprise bulky and hollow areas, as well as intermediate zones. Yet, the potential to design innovative shapes can be hindered by technological limits. The article tackles the manufacturability by laser-based powder bed fusion (L-PBF) of aluminum-based lattice materials by varying the beam diameter and thus the relative density. The printing accuracy is evaluated against the distinctive building phenomena in L-PBF of metals. The main finding consists in identification of a feasibility window that can be used for development of lightweight industrial components. A relative density of 20% compared with fully solid material (aluminum alloy A357.0) is found as the lowest boundary for a 3-mm cell dimension for a body-centered cubic structure with struts along the cube edges (BCCXYZ) and built with the vertical edges parallel to the growth direction to account for the worst-case scenario. Lighter structures of this kind, even if theoretically compliant with technical specifications of the machine, result in unstable frameworks.

    关键词: additive manufacturing,lattice,aluminum alloy,laser-based powder bed fusion

    更新于2025-09-19 17:13:59