修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

614 条数据
?? 中文(中国)
  • Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser

    摘要: In this study, boron-doped single-walled carbon nanotubes (SWCNTs) were synthesized by high-temperature heat treatment (1300 °C) with a boric acid precursor and SWCNTs instead of the conventional chemical doping process. Then, these boron-doped single-walled carbon nanotubes (B-SWCNTs) were added to polyurethane to prepare polyurethane nanocomposites having excellent thermal and mechanical properties. Changes in properties that occurred due to structural changes inside the composite were investigated as the added amount of nanofiller was increased. In particular, a near-infrared (NIR) laser (808 nm) was directly irradiated on the nanocomposite film to induce photothermal properties on the surface of the B-SWCNTs. In the case of the PU nanocomposite film with a filler content of 3 wt%, a self-heating film material that rapidly heated to 250 °C within 10 s was developed. The newly developed material can be applied to electronic devices and products as a heat-generating coating material, de-icing of airplane, a heat sink, for bio-sensing, etc., using a moulding process.

    关键词: boron-doping,photothermal,thermoelectrics,carbon nanotube,polyurethane

    更新于2025-11-25 10:30:42

  • Formation of ordered defect structures in lithium niobate crystals of different chemical composition at non-equilibrium processes of different nature

    摘要: Ordered defective structures in lithium niobate crystals have been established. The phenomenon is a result of non-equilibrium processes of a different nature: photo-induced light scattering, laser ablation, and creation of cracks during relieving mechanical stresses. The shape of such structures depends on the nature and energy that affect a crystal. A number of concentric areas with a different density of laser-induced defects with a changed refractive index appear during photoinduced light scattering. Concentric clusters of microdomains appear in a macrodomain of another sign at laser ablation as a result of local switching under impulse laser radiation. A number of microcracks with a fractal structure appear near main macro-crack during cracking under mechanical stress. Thus, appearance of ordered defective structure occurs not only in the local spot of direct exposure to laser radiation, mechanical stress, etc., but also in some volume of a crystal around it.

    关键词: Doping,Laser ablation,Lithium niobate,Mechanical stress,Defective structure,Photorefractive effect

    更新于2025-11-21 11:24:58

  • Electrical Properties of Fluoro-Substituted Perovskites Ba2 ? 0.5xCaNbO5.5 ?xFx

    摘要: The effect of F--doping on the transport properties of perovskite-type complex oxides based on barium—calcium niobate Ba2CaNbO5.5 is analyzed. It is found that, regardless of the mechanism of introducing fluoride ions into the oxygen sublattice, the О2– and Н+ conductivities increase in the range of low fluoride concentrations due to an increase in the mobility of current carriers.

    关键词: perovskite,anion doping,heterovalent doping,protonic conductivity,ionic conductivity

    更新于2025-11-21 11:20:42

  • Cr3+ doped nanoporous anodic alumina: Facile microwave assisted doping to realize nanoporous ruby and phase dependent photoluminescence

    摘要: Microwave-assisted solution technique (MAST) was used for the homogeneous doping of Cr3+ in nanoporous anodic alumina (NAA) which when heat-treated transforms into nanoporous ruby. The rise in annealing temperature led to the phase transition in the sequence: amorphous- δ- θ- α-alumina as evidenced by XRD. The dopant was homogenously distributed as seen from the elemental mapping and the Cr3+ content was 0.5 at%. Di?use re?ectance spectroscopy (DRS) displayed the characteristic blue and green absorption bands and the color-tone varied from light-green at 700 °C to the pink appearance at 1350 °C owing to the dopant di?usion. Two broad photoluminescence (PL) excitation bands centered at ~550 nm and ~400 nm were observed whose intensity increased with the annealing temperature. All the alumina phases exhibited characteristic phase dependent PL showing variation in the luminescence intensity and peak position. The characteristic R-line for α-phase was intense and observed at 694 nm with 4 m s lifetime in accordance with that expected for Ruby. Crystal ?eld parameters were obtained from the PL excitation spectra and Dq/B values were found to be higher than 2.3 for all the phases of NAA con?rming the presence of Cr3+ ions in the strong crystal ?eld. With annealing, the CIE coordinates moved towards the red region. The presented work shows a promising easy and inexpensive method for dopant incorporation into alumina and explores the understanding of phase-dependent emission of Cr3+ doped NAA for their potential applications in the areas of nano-optics and composite luminescent nanomaterials.

    关键词: Nanoporous anodic alumina,Cr3+ doping,Photoluminescence,Phase transition

    更新于2025-11-21 11:18:25

  • A Combined Experimental and Theoretical Insights into the Synergistic Effect of Cerium Doping and Oxygen Vacancies into BaZrO <sub/>3-δ</sub> Hollow Nanospheres for Efficient Photocatalytic Hydrogen Production

    摘要: The long-standing debate over the influence of oxygen vacancies and various dopants has been the center point in perovskite-based compounds for their photocatalytic applications. Hydrothermally synthesized Cerium doped BaZrO3 (BZO) hollow nanospheres has been systematically studied by experimental and theoretical calculations to understand the effect of Cerium doping and oxygen vacancies on the photocatalytic properties. Compounds synthesized by a template-free route were composed of hollow nanospheres generated by Ostwald ripening of spherical nanospheres, which were formed by agglomeration of nanoparticles. The high alkaline condition and high temperature during the hydrothermal condition may lead to the formation of local disorders and oxygen vacancies in the compounds, confirmed by ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analysis and density functional theoretical (DFT) calculations. Combination of oxygen vacancies and progressive doping of Ce onto BZO, BaZr1–xCexO3 (x = 0.00 – 0.04), creates additional energy levels stipulated by vacancy defects and Ce mixed valance states within the band gap of BZO thereby reducing its band gap. The photocatalytic efficacy of the compounds has been examined by photo-driven H2 generation concomitant with oxidation of a sacrificial donor. In this study, BaZr0.97Ce0.03O3 shows the highest efficiency (823 μmol h-1 g-1) with an apparent quantum yield (AQY) of 6% in photocatalytic H2 production among all five synthesized samples. The data obtained from the UV–Vis DRS, XPS, ESR analysis and DFT calculations, the synergistic effect of decreasing the band gap due to Ce doping and the presence of Ce (III)/Ce (IV) pairs along with oxygen vacancies and lattice distortions could be the reasons behind the enhanced photocatalytic efficacy of BaZr1–xCexO3 (x = 0.00 – 0.04) under UV–Visible light.

    关键词: Photocatalytic hydrogen production,Cerium doping,Oxygen vacancies,BaZrO3,Hollow nanospheres

    更新于2025-11-21 11:01:37

  • Tunable Emission of Bluish Zn-Cu-Ga-S Quantum Dots by Mn Doping and their Electroluminescence

    摘要: Based on bluish-emitting double-shelled quantum dots (QDs) of Zn?Cu?Ga?S (ZCGS)/ZnS/ZnS, Mn doping into ZCGS host with different Mn/Cu concentrations is implemented via surface adsorption and lattice diffusion. The resulting double-shelled Mn-doped ZCGS (ZCGS:Mn) QDs exhibit a distinct Mn2+ 4T1?6A1 emission as a consequence of effective lattice incorporation simultaneously with host intragap states-involving emissions of free-to-bound and donor-acceptor pair (DAP) recombinations. The relative contribution of Mn emission in the overall photoluminescence (PL) is consistently proportional to its concentration, resulting in tunable PL from bluish, white, to reddish white. Regardless of Mn doping and its concentration all QDs possess high PL quantum yield (QY) levels of 74?79%. Those undoped and doped QDs are then employed as an emitting layer (EML) of all-solution-processed QD-light-emitting diodes (QLEDs) with hybrid charge transport layers and their electroluminescence (EL) is compared. When compared to undoped QDs, doped analogues give rise to a huge spectral disparity of EL versus PL, specifically showing a near-complete quenching of Mn2+ EL. This unexpected observation is rationalized primarily by considering unbalanced carrier injection to QD EML on the basis of energetic alignment of the present QLED and rapid trapping of holes injected at intragap states of QDs.

    关键词: Tunable emission,Electroluminescence,Emission quenching,Zn?Cu?Ga?S quantum dots,Mn doping

    更新于2025-11-20 15:33:11

  • Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions

    摘要: Sulfur and nitrogen co-doped graphene quantum dots (SN-GQDs) were synthesized through an efficient infrared (IR)-assisted pyrolysis of glucose, urea, and ammonia sulfate at 260°C. These served as a highly selective probe for the sensing of Hg2+ ions in an aqueous solution. The IR technique can also prepare N-doped graphene quantum dots (N-GQDs), which have been compared with SN-GQDs for their fluorescence (FL) quenching sensitivities by Hg2+ ions. The FL intensities of both GQDs show decreasing functions of concentration of Hg2+ ions within the entire concentration ranges of 10 ppb?10 ppm. The sensitivity of SN-GQD is 4.23 times higher than that of N-GQD, based on the calculation of the Stern-Volmer equation. One inter-band gap structure of SN-GQDs for the detection of mercury ions is proposed. The S doping can coordinate with phenolic groups on the edge of SN-GQDs (i.e., the formation of (CxO)2Hg2+) and induce the cutting off or alleviation of photon injection paths, thereby leading to significant FL quenching. This work proves that SN-GQD offers sufficient sensitivity for probing the quality of drinking water to ensure that it contains less than 10 ppb of Hg2+ ions, as per the World Health Organization standard.

    关键词: Fluorescence quenching,Nitrogen doping,Infrared-assisted heating,Graphene quantum dots,Sulfur doping,Mercury detection

    更新于2025-11-19 16:56:42

  • dz2 Orbitals Mediated Bound Magnetic Polarons in Ferromagnetic Ce Doped BaTiO3 Nanoparticles and its Enriched Two Photon Absorption Cross Section

    摘要: Enriched ferromagnetism and two photon absorption (TPA) cross section of perovskite BaTiO3 nanoparticles are indispensible for magnetic and optical data storage applications. In this work, the hydrothermally synthesized Ce doped BaTiO3 nanoparticles exhibit the maximum room temperature ferromagnetism (4.26×10-3 emu/g) at 4 mol% due to the increase of oxygen vacancies as evidenced by X-ray photoelectron, electron spin resonance spectroscopies and density functional theory (DFT) calculations. Hence, the oxygen vacancy constituted bound magnetic polaron (BMP) model has been invoked to explain the enhancement of ferromagnetism. BMP theoretical model indicates the increase of BMP magnetization (M0, 3.0 to 4.8×10-3 emu/g) and true spontaneous moment per BMP (meff, 4 to 9.88×10-4 emu) on Ce doping. DFT calculations show that BMPs mediate via Ti d orbitals leading to the ferromagnetism. Besides, it is understood that the magnetic moment induced by Ce at Ba site is higher than Ce at Ti site in the presence of oxygen vacancies. Open aperture Z-scan technique displays the highest TPA coefficient β (7.08×10-10 m/W) and TPA cross section σTPA (455×104 GM) at 4 mol% of Ce as a result of robust TPA induced excited state absorption. A large σTPA is attributed to the longer excited state lifetime τ (7.63 ns) of charge carriers created by oxygen vacancies and Ce ions which encounter several electronic transitions in the excited sub-states.

    关键词: Ce doping,oxygen vacancies,bound magnetic polarons,two photon absorption,DFT calculations,Z-scan technique,BaTiO3 nanoparticles,ferromagnetism

    更新于2025-11-19 16:56:35

  • Photocatalytic and Antimicrobial Properties of Ga Doped and Ag Doped ZnO Nanorods for Water Treatment

    摘要: Water contamination is a worldwide concerning problem. Emerging contaminants have made conventional water treatment processes ineffective. This makes the search for new materials with improved physical-chemical properties for water treatment an urgent necessity. Doping metal oxides nanostructures can improve the photocatalytic degradation of contaminants and the antimicrobial activity of the material. During this process, water treatment not only involves the degradation of toxic pollutants, but also the elimination of virus and bacteria. Then, it is important to study not only the effect of a dopant in a material as photocatalyst but also the effect in its antimicrobial properties. In this work ZnO nanorods, Ga doped ZnO nanorods and Ag doped ZnO nanorods are synthesized and supported in polyethylene by a fast-hydrothermal microwave heating synthesis. Their photocatalytic performance and antimicrobial properties for water treatment were evaluated. Experiments show that Ag and Ga can improve the photocatalytic and antimicrobial properties of ZnO nanorods; the relationship between doping concentrations, with both the toxicity effect of the nanorods toward bacteria and the nanorods photocatalytic performance, is shown.

    关键词: doping,water,antimicrobial,nanorods,contamination,metal oxide,photocatalysis,zinc oxide

    更新于2025-11-19 16:56:35

  • Heterochiral Doped Supramolecular Coordination Networks for High-Performance Optoelectronics

    摘要: Chiral self-sorting has great potential for constructing new complex structures and determining chirality-dependent properties in multicomponent mixtures. However, it is still of great challenge to achieve high fidelity chiral self-discrimination. Besides, the researches on the coordination polymers or metal-organic frameworks (CPs/MOFs) for micro-/nano-optoelectronics are still rare due to their low conductivity and difficulty in developing a rapid and simple scale-up synthetic method. Here, heterochiral supramolecular coordination networks (SCNs) were synthesized by the solvothermal reaction of naphthalene diimide enantiomers and cadmium iodide, using the chirality as a synthetic tuning parameter to control the morphologies. Intriguingly, heterochiral micro-/nanocrystals exhibited photochromic and photodetecting properties. Furthermore, we also developed a simple and efficient doping method to enhance the conductivity and photoresponsivity of micro-/nanocrystals using hydrazine. From experimental and theoretical studies, the mechanism was suggested as follows: the radicals in the singly occupied molecular orbital (SOMO) level of the ligands provide charge carriers that can undergo “through-space” transport between π–π stacked ligands and the electron transfer from adsorbed hydrazine to the SCNs results in reduction of energy gap, leading to increased conductivity. Our findings demonstrate a simple and powerful strategy for implementing coordination networks with redox ligands for micro-/nano-optoelectronic applications.

    关键词: chiral self-discrimination,doping,micro-/nano-devices,optoelectronics,supramolecular coordination network

    更新于2025-11-19 16:56:35