修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Designing WO <sub/>3</sub> /CdIn <sub/>2</sub> S <sub/>4</sub> type-II heterojunction with both efficient light absorption and charge separation for enhanced photoelectrochemical water splitting

    摘要: WO3 is a typical photoanode material for photoelectrochemical (PEC) water splitting. However, the PEC activity of WO3 photoanode is limited by its poor visible light absorption as well as severe carrier recombination at the electrode/electrolyte interface. Herein, we integrate small-band-gap CdIn2S4 nanoplates with hydrothermally grown WO3 nanowall arrays to form into a three-dimensional (3D) WO3/CdIn2S4 heterojunction through a chemical bath deposition process. The synthesis parameters of CdIn2S4, including reaction time and temperature, have been tuned to optimize the PEC performance. The WO3/CdIn2S4 composite photoanode prepared at 50 °C for 5 h exhibits the highest photocurrent of 1.06 mA cm?2 at 1.23 V versus reversible hydrogen electrode without the presence of holes scavenger, which is about 5.9 times higher than that of bare WO3 photoanode. The band alignment between WO3 and CdIn2S4 is confirmed by the ultraviolet–visible light absorption spectra and ultraviolet photoelectron spectra. The PEC performance enhancement is attributed to the enhanced light absorption benefiting from the small band gap of CdIn2S4 and efficient charge separation originating from the type-II alignment between WO3 and CdIn2S4.

    关键词: photoanode,WO3,CdIn2S4,photoelectrochemical water splitting,heterojunction

    更新于2025-09-11 14:15:04

  • Multi-mode photocatalytic performances of CdS QDs modified CdIn2S4/CdWO4 nanocomposites with high electron transfer ability

    摘要: In general, quantum dots have the property of generating a plurality of charge carriers using hot electrons or using a single high-energy photon to improve the photocatalytic properties of the material. In this paper, CdS QDs@CdIn2S4/CdWO4 modified by CdS QDs was synthesized by the microwave-assisted hydrothermal method, and its composition, crystal structure, morphology, and surface physicochemical properties were well characterized. Electron microscopy results showed that CdS QDs@CdIn2S4/CdWO4 composite material exhibited a sheet structure with a length of ca. 350 nm and a width of ca. 50 nm, and CdS QDs uniformly distributes with a diameter of about 5 nm on the sheet structure. UV-visible diffuse reflectance tests showed that the combination of CdS QDs and CdIn2S4 can extend the light absorption range of CdWO4 to the visible region. Photoluminescence spectroscopy confirmed that CdS QDs had efficient electron transport capabilities. The multi-mode photocatalytic activity of CdS QDs@CdIn2S4/CdWO4 showed an excellent ability to degrade organic pollutants. Under the conditions of no co-catalyst and Na2S-Na2SO3 as the sacrificial agent, the hydrogen production of CdS QDs@CdIn2S4/CdWO4 can reach 221.3 μmol g?1 when exposed to visible light (λ > 420 nm) for 8 h.

    关键词: CdS QDs,Quantum dots,Microwave-assisted hydrothermal method,CdWO4,Multimode photocatalysis,H2 evolution,CdIn2S4

    更新于2025-09-10 09:29:36