修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

94 条数据
?? 中文(中国)
  • Photoluminescence Enhancement of Perovskite CsPbBr3 Quantum Dots by Plasmonic Au Nanorods

    摘要: Plasmonic Au nanorods/CsPbBr3 quantum dots film has been prepared via spin-coating. It is found that photoluminescence intensity of Au nanorods/CsPbBr3 quantum dots film exhibits 2-fold enhancement compared with pristine CsPbBr3 quantum dots film. Time-resolved photoluminescence decay curves show that the lifetime of CsPbBr3 quantum dots film decreases from 6.15 ns to 4.78 ns after combining with Au nanorods. The finite-difference time-domain simulation indicates that Au nanorods arouse a localized surface plasmon resonance around 500 nm, which enhances the emission intensity of CsPbBr3 quantum dots film.

    关键词: CsPbBr3 Quantum Dot,Photoluminescence,Local Surface Plasmon Resonance,Au Nanorods

    更新于2025-09-12 10:27:22

  • Precursor-Mediated Synthesis of Shape-controlled Colloidal CsPbBr <sub/>3</sub> Perovskite Nanocrystals and their Nanofiber-Directed Self-assembly

    摘要: Shape control is often necessary to tune the optical and electronic properties of nanocrystals (NCs) and is mostly achieved through manipulation of surface ligands and processing conditions. Here we present a versatile synthesis of colloidal CsPbBr3 perovskite NCs of various shapes (nanorods, nanocubes and nanoplatelets) from an inexpensive steroidal Cs precursor: cesium cholate (CsCh). Cesium cholate has several advantages over the most commonly used Cs-precursor (cesium oleate or Cs2CO3 or CsOAc) such as low-cost, non-hygroscopicity and better reproducibility in the perovskite synthesis. Due to the solubility of this Cs-precursor in polar solvents such as methanol, a miniscule polar environment is created during the nucleation and growth of the nanocrystals leading to the serendipitous formation of nanorods at 180 ℃, whereas using a biphasic mixture of 1-octadecene and methanol, the morphology changes to nanocubes. By lowering the reaction temperature (90 ℃), nanoplatelets with 8-9 monolayers thicknesses are formed. These colloidal NCs of variety of shapes are strongly luminescent with a green emission having narrow emission linewidths (16-17 nm) and high quantum yields (96% for nanocubes, 94% for nanoplatelets). Furthermore, hybrid materials of nanocubes and organogel of a dimeric bile acid-derived ester gelator are obtained through co-assembly in which nanocubes arrange along nanofibers with stable, sharp and bright green emission. This enables spatial ordering of nanocubes ranging from micron to centimeter scale in thin films, which is crucial for advanced optoelectronic applications. To date, there is no report in literature on the anisotropic organization of perovskite CsPbBr3 nanocubes triggered by supramolecular co-assembly involving organogel nanofibers.

    关键词: nanocubes,organogel,Shape control,hybrid materials,nanorods,cesium cholate,nanoplatelets,supramolecular co-assembly,colloidal CsPbBr3 perovskite NCs

    更新于2025-09-12 10:27:22

  • Water, a green solvent for fabrication of high quality CsPbBr3 films for efficient solar cells

    摘要: Water has been labeled as a devil in fabrication and stability of perovskite solar cells. The inherent cognition impels researchers to prepare perovskite films in water-controlled conditions. Herein, water is used as a green solvent to prepare CsPbBr3 films through a two-step spin-coating method. Due to the high solubility of CsBr but low solubility of PbBr2 in water, it provides a possibility to deposit CsBr onto PbBr2 from water solution without destroying the film. Here, high quality CsPbBr3 films are fabricated by spin-coating concentrated CsBr/H2O solution onto the PbBr2 film followed by annealing. As a result, the solar cells basing on a configuration of FTO/TiO2/CsPbBr3/Carbon exhibit a power conversion efficiency of 6.12%. This work provides a simple and easy way to prepare high quality CsPbBr3 films for efficient solar cells. It makes a solid step towards to reducing the solvent toxicity in the fabrication process of perovskite solar cells. It also breaks the forbidden zone for fabricating perovskite films from water, and updates the inherent understanding of water in the research of perovskite solar cells.

    关键词: CsPbBr3 film,two-step method,solar cell,green solvent,perovskite

    更新于2025-09-12 10:27:22

  • Back-to-back Schottky junction photodetectors based on CVD grown CsPbBr <sub/>3</sub> microcrystalline striped films

    摘要: In recent years, a new type of lead halide perovskite has attracted a lot of attention for next-generation photodetectors (PDs) with high responsivity, good detectivity, and fast photoresponse speed. Specifically, cesium based all-organic perovskites exhibit better photostability and therefore have achieved increasing success in PDs recently. For reducing the leak current and increasing the response speed of photo-conductive PDs, back-to-back Schottky junction PD is designed and fabricated through a direct growth approach of CsPbBr3 microcrystal (MC) films on indium tin oxide (ITO) electrodes by the chemical vapor deposition (CVD) method. Due to the enhanced Schottky barrier height and threshold voltage between CsPbBr3 and ITO electrodes, the PD exhibits the on/off ratio of up to 104, peak responsivity of 3.9 AW?1, detectivity of 3.8 × 1012, and fast response speed of 0.22 ms (rise time) and 0.45 ms (decay time). In addition, the stability of PD is also enhanced by the high crystal quality of CVD grown CsPbBr3 MCs.

    关键词: microcrystalline films,Schottky junction,photodetectors,CsPbBr3,chemical vapor deposition

    更新于2025-09-12 10:27:22

  • Interfacial charge transfer between CsPbBr <sub/>3</sub> quantum dots and ITO nanoparticles revealed by single-dot photoluminescence spectroscopy

    摘要: The interfacial charge transfer between single CsPbBr3 perovskite quantum dots (QDs) and indium tin oxide (ITO) is investigated by single-dot photoluminescence spectroscopy. It is found that when the Fermi level of single perovskite QDs aligns with that of ITO nanoparticles, the QD surface cannot be charged by the ITO through interfacial electron transfer. Therefore, the QD/ITO system with Fermi level alignments can exclude exciton nonradiative recombination processes involving the additional surface electrons, such as the exciton Auger recombination and the valence band hole transfer processes. Hence the photovoltaic devices based on perovskite QD/ITO system with the Fermi level alignments have the improved photoelectric conversion efficiency.

    关键词: Fermi level alignments,single-dot photoluminescence spectroscopy,photoelectric conversion efficiency,interfacial charge transfer,CsPbBr3 quantum dots,ITO nanoparticles

    更新于2025-09-11 14:15:04

  • Halogen Vacancies Enable Ligand-Assisted Self-Assembly of Perovskite Quantum Dots into Nanowires

    摘要: Interest has been growing in defects of halide perovskites in view of their intimate connection with key material optoelectronic properties. In perovskite quantum dots (PQDs), the influence of defects is even more apparent than in their bulk counterparts. By combining experiment and theory, we report herein a halide-vacancy-driven, ligand-directed self-assembly process of CsPbBr3 PQDs. With the assistance of oleic acid and didodecyldimethylammonium sulfide, surface-Br-vacancy-rich CsPbBr3 PQDs self-assemble into nanowires (NWs) that are 20–60 nm in width and several millimeters in length. The NWs exhibit a sharp photoluminescence profile ( (cid:2) 18 nm full-width at-half-maximum) that peaks at 525 nm. Our findings provide insight into the defect-correlated dynamics of PQDs and defect-assisted fabrication of perovskite materials and devices.

    关键词: CsPbBr3,self-assembly,halide vacancy,nanowire,perovskite quantum dot

    更新于2025-09-11 14:15:04

  • Self‐Powered UV–Vis–NIR Photodetector Based on Conjugated‐Polymer/CsPbBr <sub/>3</sub> Nanowire Array

    摘要: Perovskite photodetectors have attracted intensive research interest due to promising applications in sensing, communication, and imaging. However, their performance is restricted by the narrow spectrum range, required power source, and instability in ambient environment. To address these issues, a self-powered photodetector based on the inorganic CsPbBr3 perovskite nanowire array/conjugated-polymer hybrid structure is designed. The spectra response range of the device can be extended to 950 nm, along with outstanding stability, fast response speed (111/306 μs), and large detectivity (1.2 × 1013 Jones). The performance parameters are comparable to or even better than most reported CsPbBr3 and conjugated-polymer photodetectors. The excellent performance is mainly attributed to the efficient carrier generation, separation, and transport resulting from array structure and favorable band structure.

    关键词: CsPbBr3,photodetector,perovskite,diffraction grating,self-powered

    更新于2025-09-11 14:15:04

  • Hole‐Boosted Cu(Cr,M)O <sub/>2</sub> Nanocrystals for All‐Inorganic CsPbBr <sub/>3</sub> Perovskite Solar Cells

    摘要: The all-inorganic CsPbBr3 perovskite solar cell (PSC) is a promising solution to balance the high efficiency and poor stability of state-of-the-art organic–inorganic PSCs. Setting inorganic hole-transporting layers at the perovskite/electrode interface decreases charge carrier recombination without sacrificing superiority in air. Now, M-substituted, p-type inorganic Cu(Cr,M)O2 (M = Ba2+, Ca2+, or Ni2+) nanocrystals with enhanced hole-transporting characteristics by increasing interstitial oxygen effectively extract holes from perovskite. The all-inorganic CsPbBr3 PSC with a device FTO/c-TiO2/m-TiO2/CsPbBr3/Cu(Cr,M)O2/ structure carbon achieves an efficiency up to 10.18 % and it increases to 10.79 % by doping Sm3+ ions into perovskite halide, which is much higher than 7.39 % for the hole-free device. The unencapsulated Cu(Cr,Ba)O2-based PSC presents a remarkable stability in air in either 80 % humidity over 60 days or 80 8C conditions over 40 days or light illumination for 7 days.

    关键词: CsPbBr3,inorganic hole-transporting materials,all-inorganic perovskite solar cells,long-term stability,perovskites

    更新于2025-09-11 14:15:04

  • Hole-Boosted Cu(Cr,M)O <sub/>2</sub> Nanocrystals for All-Inorganic CsPbBr <sub/>3</sub> Perovskite Solar Cells

    摘要: The all-inorganic CsPbBr3 perovskite solar cell (PSC) is a promising solution to balance the high efficiency and poor stability of state-of-the-art organic–inorganic PSCs. Setting inorganic hole-transporting layers at the perovskite/electrode interface decreases charge carrier recombination without sacrificing superiority in air. Now, M-substituted, p-type inorganic Cu(Cr,M)O2 (M = Ba2+, Ca2+, or Ni2+) nanocrystals with enhanced hole-transporting characteristics by increasing interstitial oxygen effectively extract holes from perovskite. The all-inorganic CsPbBr3 PSC with a device FTO/c-TiO2/m-TiO2/CsPbBr3/Cu(Cr,M)O2/carbon structure achieves an efficiency up to 10.18 % and it increases to 10.79 % by doping Sm3+ ions into perovskite halide, which is much higher than 7.39 % for the hole-free device. The unencapsulated Cu(Cr,Ba)O2-based PSC presents a remarkable stability in air in either 80 % humidity over 60 days or 80 8C conditions over 40 days or light illumination for 7 days.

    关键词: CsPbBr3,inorganic hole-transporting materials,all-inorganic perovskite solar cells,long-term stability,perovskites

    更新于2025-09-11 14:15:04

  • Recent Progress of All‐Bromide Inorganic Perovskite Solar Cells

    摘要: Inorganic perovskite solar cells (PSCs) have attracted enormous attention during the past 5 years. Many advanced strategies and techniques have been developed for fabricating inorganic PSCs with improved efficiency and stability to realize commercial applications. CsPbBr3 is one of the representative materials of inorganic perovskites and has demonstrated excellent stability against thermal and high humidity environmental conditions. The power conversion efficiency of CsPbBr3-based PSCs has increased significantly from 5.95% in 2015 to 10.91%, and the storage stability under moisture (≈80% relative humidity) and heat (≈80 °C) is more than 2000 h. The outstanding performance of CsPbBr3 PSCs shows great potential in light-to-electricity conversion applications. In this review, recent developments of CsPbBr3-based PSCs including the physico-chemical as well as optoelectronic properties, processing techniques for fabricating CsPbBr3 films, derivative phase structures, efficiency, and stability of devices are reviewed and discussed. Finally, the challenges and outlook of CsPbBr3 PSCs for future research directions are outlined.

    关键词: CsPbBr3,solutions,inorganic perovskite solar cells,vapor depositions,stability

    更新于2025-09-11 14:15:04