- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Superior light harnessing and charge injection kinetics utilizing mirror-like nano cuboidal ceria coupled with reduced graphene oxide in zinc oxide nanoparticle based photovoltaics
摘要: Efficiency in nanoparticle based photovoltaics is limited by optical transparency, light absorption as well as detrimental back transfer of electron at the hetero-interfaces. Three dimensional (3D) micro/nanostructures with excellent light scattering properties play pivotal role in light harvesting efficiency in DSSCs. Present study deals with the design and development of ternary hybrid photoanode utilizing high quality mirror like nano-cuboidal ceria (CeO2 NC) and 2D- reduced graphene oxide (RGO) sheets in conjunction with ZnO nanoparticle. A ~6% power conversion efficiency has been achieved for photoanode with optimized CeO2 NC loaded with 1 wt% RGO into ZnO NP. CeO2 NC owing to its size and high quality mirror like facets provides a better light harvesting by multiple interactions of incident photon with the absorber as revealed by UV–Vis diffused reflectance and IPCE analysis. 2D- RGO is proposed to act as an electron sink and provides faster electron transport pathway. Inclusion of 2D- RGO sheets yields a better charge injection kinetics (keinj ~ 2.3 × 108 s?1 for ternary, 1.1 × 108 s?1 for reference device) and collection at FTO as well as elevated recombination resistance (Rrec) and photo-induced electron life time (τe), unveiled by Electrochemical Impedance Spectroscopic (EIS) analysis corroborates a reduced reverse tunneling of photo-injected electron at ZnO/sensitizer/redox couple interface.
关键词: Diffusion,Mirror-like,Light scattering material,Reduced graphene oxide,Electrochemical impedance spectroscopy,Nano cuboidal
更新于2025-11-21 11:01:37
-
Influence of thermal oxidation temperature on the microstructure and photoelectrochemical properties of ZnO nanostructures fabricated on the zinc scraps
摘要: In this paper, zinc oxide (ZnO) nanowires were synthesized by thermal oxidation method of zinc scrap at various temperatures ranging between 400 °C and 900 °C under air atmosphere. The influence of different temperature on the phase structures, surface morphologies and photoelectrochemical (PEC) properties of ZnO nanowires were investigated. The characterizations were carried out via X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that annealing temperature played a significant role on surface morphology and phase structure. The band gap energy of the ZnO nanowires changed between 3.12 and 3.194 eV. The photoelectrochemical (PEC) study of the ZnO nanowires was investigated in 0.1 M Na2SO4 aqueous solution. The PEC findings represented that the ZnO nanowire annealed at 600 °C had 252.2 mA/cm2 net photocurrent density which was the best efficiency and at least 10 times higher than that of the lowest one at 1.25 V (vs. VRHE). Mott-Schottky analysis showed that the ZnO nanowires behaved as n-type semiconductor. ZnO nanowire annealed at 600 °C had the highest carrier density value (Nd = 9.03 × 10^23). Moreover, the charge transfer behavior of the ZnO nanowires was determined by means of electrochemical impedance spectroscopy (EIS) measurements. As a result, this work recommends that the ZnO nanowires could be good candidate on PEC applications. Also, thermal oxidation method is an efficient method for fabrication of ZnO nanowires.
关键词: Thermal oxidation,Zn scrap,Electrochemical impedance spectroscopy (EIS),ZnO nanowires,Photoelectrochemical (PEC)
更新于2025-09-23 15:23:52
-
Chemical Sensing Performance of Flower-Like ZnO/PSi Nanostructures via Electrochemical Impedance Spectroscopy Technique
摘要: ZnO nanostructures were synthesized on porous Si (PSi) structures using a method developed by this study known as electric field-assisted aqueous solution technique. The detailed characterization of this nanostructure was performed using atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction, room-temperature photoluminescence and Raman spectroscopy. Electrochemical impedance spectroscopy (EIS) technique was used to detect two classifications of chemical solvents, namely polar and non-polar solvents. Nyquist plots in EIS were utilized to detect chemical solvents (ethanol, acetone, toluene and benzene) exposed to ZnO/PSi nanostructure arrays. The results showed that the grown flower-like ZnO nanostructure arrays served as good chemical sensors with high sensitivity and low power consumption. Meanwhile, the ZnO/PSi nanoflowers exposed to ethanol showed the highest sensitivity (94.6% response) compared to other chemical solutions with the least response exhibited by benzene (68.4% response). It was postulated that the interaction between the solution and oxygen species of ZnO/PSi nanostructure surface induced a resistance change resulting in the release of free electrons that migrated to the conduction band of ZnO/PSi nanoflower structures and reduced the number of surface-adsorbed oxygen species. Subsequently, the changes observed in the Nyquist semicircle diameter and Warburg impedance led to the chemical sensing response.
关键词: ZnO/PSi nanoflower,electric field-assisted aqueous solution technique,Chemical sensors,electrochemical impedance spectroscopy,Nyquist plot
更新于2025-09-23 15:23:52
-
Properties of Porous Silicon Precipitated with Nickel for Gas Sensors
摘要: The preparation and properties of modified porous silicon is discussed and a proposal of a sensitive layer for a gas detector is presented. The modification is done by precipitation and electrochemical deposition of nickel. The morphology of sample surfaces is examined by atomic force microscopy and scanning electron microscopy (SEM). SEM-coupled energy dispersive spectroscopy is used to analyse the chemical composition of the samples. Magnetic response is measured with a SQUID magnetometer. Electrochemical impedance spectroscopy is used to study the sensitivity of the samples to isopropanol vapour in the presence of alternating electric current. A series of samples prepared with a higher anodic current density show higher sensitivity to isopropanol vapours in comparison to a lower anodic current.
关键词: Electrochemical Impedance Spectroscopy,Porous Silicon,Gas Sensors,SQUID,Electroless Nickel Deposition,Atomic Force Microscopy
更新于2025-09-23 15:22:29
-
Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of <i>Salmonella enterica</i> in Chicken Broth
摘要: Food-borne illnesses are a growing concern for the food industry and consumers, with millions of cases reported every year. Consequently, there is a critical need to develop rapid, sensitive, and inexpensive techniques for pathogen detection in order to mitigate this problem. However, current pathogen detection strategies mainly include time-consuming laboratory methods and highly trained personnel. Electrochemical biosensors offer a rapid, low-cost alternative to laboratory techniques, but the electrodes used in these biosensors require expensive nanomaterials to increase their sensitivity, such as noble metals (e.g., platinum, gold) or carbon nanomaterials (e.g., carbon nanotubes, or graphene). Herein, we report the fabrication of a highly sensitive and label-free laser-induced graphene (LIG) electrode that is subsequently functionalized with antibodies to electrochemically quantify the food-borne pathogen Salmonella enterica serovar Typhimurium. The LIG electrodes were produced by laser induction on the polyimide film in ambient conditions and, hence, circumvent the need for high-temperature, vacuum environment, and metal seed catalysts commonly associated with graphene-based electrodes fabricated via chemical vapor deposition processes. After functionalization with Salmonella antibodies, the LIG biosensors were able to detect live Salmonella in chicken broth across a wide linear range (25 to 105 CFU mL?1) and with a low detection limit (13 ± 7 CFU mL?1; n = 3, mean ± standard deviation). These results were acquired with an average response time of 22 min without the need for sample preconcentration or redox labeling techniques. Moreover, these LIG immunosensors displayed high selectivity as demonstrated by nonsignificant response to other bacteria strains. These results demonstrate how LIG-based electrodes can be used for electrochemical immunosensing in general and, more specifically, could be used as a viable option for rapid and low-cost pathogen detection in food processing facilities before contaminated foods reach the consumer.
关键词: biosensor,foodborne pathogens,graphene,food safety,Salmonella Typhimurium,electrochemical impedance spectroscopy
更新于2025-09-23 15:21:01
-
Effect of the corona treatment on the microstructure of PVDF probed by electrochemical impedance spectroscopy
摘要: The microstructure of Polyvinylidene Fluoride (PVDF) membrane treated by corona was investigated in this study. The crystalline structure of PVDF membrane was con?rmed by x-ray diffraction (XRD), and the hole structure was evaluated by electrochemical impedance spectroscopy (EIS). It was found that the β phase appears in XRD pattern for treated PVDF, implying the polarization during corona treatment. The variation of membrane resistance suggested that the hole structure of PVDF became more porous with increasing treated time from 0 h to 2 h ?rstly, then became denser with treated time from 2 h to 4 h, and ?nally cracked at the treated time longer than 4 h. All the results indicated that corona treatment would induce the change of the bulk structure of PVDF membrane.
关键词: polyvinylidene ?uoride,corona treatment,electrochemical impedance spectroscopy,hole structure
更新于2025-09-23 15:21:01
-
Electrochemical Immunosensor for Human IgE Using Ferrocene Self-Assembled Monolayers Modified ITO Electrode
摘要: The immunoglobulin E (IgE) level in serum is an important factor in the examination of allergy. Ferrocene (Fc)-modified self-assembled monolayers (SAMs) were placed on an indium tin oxide (ITO) electrode as a sensing layer for the detection of human IgE. The Fc moiety in the SAMs facilitated the electron transfer through the organic SAMs layer and electrocatalytic signal amplification. The electrochemical measurement was accomplished after the sandwich type immobilization of the receptor antibody, target human IgE, and enzyme conjugated secondary antibody. The enzyme product, p-aminophenol, was quantitatively analyzed by redox cycling via Fc. In addition, the electrochemical impedance spectroscopy (EIS) was investigated for the detection of IgE. The limit of detection (LOD), limit of quantification (LOQ), and dynamic range of the electrochemical sensor were 3 IU/mL, 10 IU/mL, and from 10 IU/mL to 100 IU/mL, respectively.
关键词: electrocatalytic reaction,indium tin oxide (ITO),human immunoglobulin E,electrochemical impedance spectroscopy,ferrocene
更新于2025-09-23 15:19:57
-
How Reproducible are Electrochemical Impedance Spectroscopic Data for Dye-Sensitized Solar Cells?
摘要: Dye-sensitized solar cell (DSC) technology has been broadly investigated over the past few decades. The sandwich-type structure of the DSC makes the manufacturing undemanding under laboratory conditions but results in the need for reproducible measurements for acceptable DSC characterization. Electrochemical impedance spectroscopy (EIS) offers the possibility to study complex electronic systems and is commonly used for solar cells. There is a tendency in the literature to present impedance data only for one representative device. At the same time, as current density–voltage plots illustrate, measurements can vary within one set of DSCs with identical components. We present multiple DSC impedance measurements on “identical” devices prepared using two different dyes and present a statistical analysis regarding the reproducibility.
关键词: dye,statistical analysis,dye-sensitized solar cells,electrochemical impedance spectroscopy
更新于2025-09-23 15:19:57
-
Electrochemical Impedance Characterization of Cell Growth on Reduced Graphene Oxide–Gold Nanoparticles Electrodeposited on Indium Tin Oxide Electrodes
摘要: The improved binding ability of graphene–nanoparticle composites to proteins or molecules can be utilized to develop new cell-based assays. In this study, we fabricated reduced graphene oxide–gold nanoparticles (rGO-AuNP) electrodeposited onto a transparent indium tin oxide (ITO) electrode and investigated the feasibility of the electrochemical impedance monitoring of cell growth. The electrodeposition of rGO–AuNP on the ITO was optically and electrochemically characterized in comparison to bare, rGO-, and AuNP-deposited electrodes. The cell growth on the rGO–AuNP/ITO electrode was analyzed via electrochemical impedance measurement together with the microscopic observation of HEK293 cells transfected with a green fluorescent protein expression vector. The results showed that rGO–AuNP was biocompatible and induced an increase in cell adherence to the electrode when compared to the bare, AuNP-, or rGO-deposited ITO electrode. At 54 h cultivation, the average and standard deviation of the saturated normalized impedance magnitude of the rGO–AuNP/ITO electrode was 3.44 ± 0.16, while the value of the bare, AuNP-, and rGO-deposited ITO electrode was 2.48 ± 0.15, 2.61 ± 0.18, and 3.01 ± 0.25, respectively. The higher saturated value of the cell impedance indicates that the impedimetric cell-based assay has a broader measurement range. Thus, the rGO–AuNP/ITO electrode can be utilized for label-free and real-time impedimetric cell-based assays with wider dynamic range.
关键词: gold nanoparticle,graphene oxide,electrochemical impedance spectroscopy,cell-based assay,electrodeposition
更新于2025-09-19 17:15:36
-
Photosensitizing Dye: Its Voltammetric Behavior and Determination in Cosmetics
摘要: We developed a method that uses electrochemical impedance spectroscopy (EIS) to choose an electrode to determine photosensitizing dye No. 201 (quaternium-73), a thiazolium derivative, in cosmetics. The method is based on nanoparticle metal oxide (tin, cerium, cobalt, iron, and nickel)-modified carbon paste electrodes. Using differential pulse voltammetry (DPV), we found that the electrocatalytic property of tin oxide was better than that of the other metal oxides tested. When the proposed method was used to determine photosensitizing dye No. 201 in commercial cosmetics, the results were comparable to those obtained using high-performance liquid chromatography with ultraviolet detection.
关键词: cosmetics,Nanoparticle metal oxide-modified carbon-paste electrodes,photosensitizing dye,electrochemical impedance spectroscopy
更新于2025-09-19 17:15:36