修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

269 条数据
?? 中文(中国)
  • Frontiers of Textile Materials (Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques) || Textiles in Solar Cell Applications

    摘要: In previous years, the energy requirement has enhanced dramatically in the world. There are many energy sources have been developed but solar energy is one of the most promising energy techniques. Moreover, the solar energy is a never ending process and has higher potential in the future world. The conventional solar cells array has been commercialized which uses glass fronted panels. However, these kinds of solar cells array are not suitable and require a light weight flexible solar cell generator/substrates. Textiles are the most suitable candidate for their potential applications in solar cells. Textiles based solar cells could be developed for flexible and wearable purposes. In this chapter, we have discussed the properties of textiles, general principle of solar cells and fabrication of textiles based solar cells. This chapter also complied and discussed the recent advancement in the development of solar cells using textiles.

    关键词: solar cells,Textiles,photovoltaics,electrode substrates

    更新于2025-09-23 15:21:01

  • One-pot fabrication of mesoporous g-C3N4/NiS co-catalyst counter electrodes for quantum-dot-sensitized solar cells

    摘要: The nickel sulfide (NiS) nanoparticles were anchored on the mesoporous graphitic carbon nitride (g-C3N4) by one-pot calcination with sulfur powder as sulfur source and pore-forming agent. It is the first attempt to use the g-C3N4/NiS as a counter electrode (CE) for quantum-dot-sensitized solar cells. The g-C3N4/NiS co-catalyst based on 0.74 wt% NiS loading for Sn2- reduction obtained a low interface charge transfer resistance (Rct) of 1.08 Ω. The power conversion efficiency of the QDSSC assembled with ZnSe/CdS/CdSe/ZnSe-sensitized TiO2 photoanode and g-C3N4/NiS CE is up to 5.64%, which is 3.05 times as high as that of pure g-C3N4 CE. The enhancement of cell efficiency is attributed to the synergistic effects of excellent morphology of g-C3N4 and its co-catalysis with NiS nanoparticles. The mesoporous architecture contributes a large specific surface area and fast electrolyte transfer channels, and the coupling of g-C3N4 with NiS promotes the transfer of charge between the interface g-C3N4/NiS and electrolytes. The presented strategy for fabricating mesoporous architecture with g-C3N4/NiS uses low-cost raw materials and a simple preparation method, which provides a feasible route to enhance the electrocatalytic activity of g-C3N4.

    关键词: g-C3N4/NiS,electrocatalytic activity,mesoporous architecture,counter electrode,quantum-dot-sensitized solar cells

    更新于2025-09-23 15:21:01

  • Nitrogen-doped graphene quantum dots prepared by electrolysis of nitrogen-doped nanomesh graphene for the fluorometric determination of ferric ions

    摘要: Nitrogen-doped graphene quantum dots (N-GQDs) were synthesized by direct electrolysis of a carbon cloth electrode coated with nitrogen-doped nanomesh graphene (NG) in high yield (~ 25%). The N-GQDs emit intense blue fluorescence with a quantum yield (QY) of 10% ± 3%. Meanwhile, the N-GQDs are rich in hydroxyl, carboxyl, basic pyridinic nitrogen, and nitro groups, which are conducive to strengthen the interaction between N-GQDs and Fe3+ for highly sensitive determination of Fe3+ ions. Specifically, the determination for Fe3+ was conducted at different concentrations of N-GQD solution with a wide linear range of 10–1000 μM (150 μg·mL?1) and a low detection limit of 0.19 μM (10 μg·mL?1). Moreover, the fluorescence quenching mechanism illustrated that the functional groups generated by electrochemical oxidation enhanced the interaction of N-GQDs and Fe3+, and the narrow band gap (2.83 eV) of N-GQDs accomplished electron transfer from N-GQDs to Fe3+ easily.

    关键词: Fluorescence lifetime,Band gap,Dynamic quenching,Carbon cloth electrode,Electrochemical oxidation

    更新于2025-09-23 15:21:01

  • Dye-sensitized solar cell based on poly(?μ-caprolactone) gel polymer electrolyte and cobalt selenide counter electrode

    摘要: In this work, gel-like polymer electrolytes were prepared by incorporating poly(ε-caprolactone) (PCL) into dimethylformamide (DMF)-potassium iodide (KI) liquid electrolytes. The optimized gel polymer electrolyte has the composition of 40 wt.% of PCL, 45 wt.% of DMF and 15 wt.% of KI with a conductivity of 2.72 × 10?3 S cm?1 at room temperature. Increase in conductivity with temperature is attributed to the increase in diffusion coefficient, D, number, n and mobility, μ of ions as determined from Nyquist plots fitting. Cobalt selenide (CoSe) was prepared by hydrothermal method and used as counter electrode catalysts in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) studies show the formation of the as-prepared CoSe. The morphology and stoichiometric composition of CoSe were studied by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The PCL-DMF-KI gel polymer electrolytes were assembled into DSSCs with CoSe or platinum (Pt) as the counter electrodes. DSSC with CoSe counter electrode shows an efficiency of 6.74% while DSSC with Pt counter electrode yields an efficiency of 6.99%. Impedance studies of DSSCs suggest that the electrocatalytic reduction of triiodide, I3 ? by the CoSe is as good as Pt.

    关键词: CoSe,PCL,Counter electrode,Gel polymer electrolyte,Dye-sensitized solar cells

    更新于2025-09-23 15:21:01

  • Performance of dye-sensitized solar cell (DSSC) using carbon black-TiO2 composite as counter electrode subjected to different annealing temperatures

    摘要: Carbon black-TiO2 composite counter electrode was synthesized via solid state method and subsequently annealed at different annealing temperatures (450–550 °C). The composite was investigated as a counter electrode, acting as an alternative to platinum in a dye-sensitized solar cell. The aim is to obtain a higher conversion efficiency of solar energy being converted into electricity. The synthesized sample was structurally characterized by X-ray diffraction and it was found that annealing temperature strongly enhanced the anatase structure of carbon black-TiO2. The surface morphology and grain size were examined by field emission scanning electron microscopy which showed the presence of mesoporous structure; this is very important for high quality dye and electrolyte distribution. Electrochemical studies of carbon black-TiO2 counter electrodes suggest that increasing the annealing temperature may lead to increased charge transfer resistance which could contribute to decreased catalytic activity. The photovoltaic properties of carbon black-TiO2 were observed to be strongly influenced by the annealing temperature; measurements taken at annealing temperature of 525 °C showed the best photovoltaic properties of JSC = 6.10 mA/cm2, VOC = 0.51 V, FF = 0.89 and η = 2.77%.

    关键词: Carbon black-TiO2 composite,Solid state method,Counter electrode,Annealing temperature

    更新于2025-09-23 15:21:01

  • Light addressable ion sensing for real-time monitoring of extracellular potassium

    摘要: Visualization of ion distribution has broad applications. We report here on a light addressable potassium (K+) sensor where light illumination of a semiconducting silicon electrode substrate results in a localized activation of the faradaic electrochemistry at the illuminated spot. This allows one, by electrochemical control, to oxidize surface bound ferrocene moieties that in turn trigger K+ transfer from the overlaid K+-selective film to the solution phase. The resulting voltammetric response is shown to be K+-selective, where peak position is a direct function of K+ activity at the surface of electrode. This concept was used to measure extracellular K+ concentration changes by stimulating living breast cancer cells. The associated decrease of intracellular K+ level was confirmed with a fluorescent K+ indicator. In contrast to light addressable potentiometry, the approach introduced here relies on dynamic electrochemistry and may be performed in tandem with other electrochemical analysis when studying biological events on the electrode.

    关键词: physiological condition,potassium,light activated electrochemistry,ion-selective electrode,potentiometry

    更新于2025-09-23 15:21:01

  • Light addressable ion sensing for real-time monitoring of extracellular potassium

    摘要: Visualization of ion distribution has broad applications. We report here on a light addressable potassium (K+) sensor where light illumination of a semiconducting silicon electrode substrate results in a localized activation of the faradaic electrochemistry at the illuminated spot. This allows one, by electrochemical control, to oxidize surface bound ferrocene moieties that in turn trigger K+ transfer from the overlaid K+-selective film to the solution phase. The resulting voltammetric response is shown to be K+-selective, where peak position is a direct function of K+ activity at the surface of electrode. This concept was used to measure extracellular K+ concentration changes by stimulating living breast cancer cells. The associated decrease of intracellular K+ level was confirmed with a fluorescent K+ indicator. In contrast to light addressable potentiometry, the approach introduced here relies on dynamic electrochemistry and may be performed in tandem with other electrochemical analysis when studying biological events on the electrode.

    关键词: physiological condition,potassium,light activated electrochemistry,ion-selective electrode,potentiometry

    更新于2025-09-23 15:21:01

  • Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells

    摘要: Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is the most successful conducting polymer in terms of practical application. It has good film forming ability, high transparency in visible light range, high mechanical flexibility, high electrical conductivity, and good stability in air. PEDOT:PSS has wide applications in many areas. This review summarizes its new applications in perovskite solar cells and approaches to modify the PEDOT:PSS layer for better device performance with the corresponding mechanisms. The most cutting edge progresses in perovskite solar cells with PEDOT:PSS are highlighted.

    关键词: hole transport layer,transparent electrode,perovskite solar cells,PEDOT:PSS,conductivity enhancement

    更新于2025-09-23 15:21:01

  • Determination of BCM-7 based on an ultrasensitive aptasensor fabricated of gold nanoparticles and ZnS quantum dots

    摘要: In this study, an ultrasensitive electrochemical aptasensor for the determination of the β-casomorphin 7 (BCM-7) as a promising biomarker of autism disorder is introduced. According to the proposed strategy, a glassy carbon electrode (GCE) was modi?ed by thiourea capped-ZnS QDs (ZnS-QDs) and gold nanoparticles (AuNPs) to further immobilization the amino-aptamer (NH2-Apt) on its surface. The NH2-Apt as a receptor of the BCM-7 was attached to the embedded surface via a formation of the Au–N bonds between the AuNPs and amino groups of the Apt. The evaluation of aptasensor by various electrochemical techniques exhibited successful sensing of the BCM-7 under two broad linear concentration ranges from 1 fM to 0.6 μM with a limit of detection (LOD) down to 350 aM. Also, the performance of the aptasensor in BCM-7 detection in real human urine samples was satisfactorily investigated. These ?ndings may facilitate distinguish of this challenging disorder and help human health.

    关键词: Thiourea capped-ZnS QDs,β-casomorphin 7,Glassy carbon electrode,Gold nanoparticles,Aptasensor,Autism

    更新于2025-09-23 15:21:01

  • Editorial: Window Electrodes for Emerging Thin Film Photovoltaics

    摘要: Photovoltaics (PVs) fabricated by printing at low temperature onto ?exible substrates are attractive for a broad range of applications in buildings and transportation, where ?exibility, color-tuneability, and light-weight are essential requirements. Two emerging PV technologies on the cusp of commercialization are organic PVs and perovskite PVs. CIGS, CdTe, and a-Si solar cells also have potential applications in ?exible PVs. It is widely recognized that these classes of PV will only ful?ll their full cost advantage and functional advantages over conventional thin ?lm PVs if a suitable transparent, ?exible electrode is forthcoming (Lu et al., 2018). Indium tin oxide (ITO) is the most popular transparent conductor material for opto-electronics including solar cells and displays. However, the fragile ceramic nature makes ITO unsuitable for future electronics such as ?exible, stretchable, and wearable electronics because it will easily develop cracks under mechanical deformation. Instead, optically thin ?lm or metallic nanowire networks (Sannicolo et al., 2016) of the most electrically conductive metals copper (Cu), silver (Ag), and gold (Au) have shown promising potential, in spite of the oxidation and parasitic absorption problem of Cu and the high material cost problem of Ag and Au. Whilst the chemical, thermal, and electrical stability of transparent electrodes based on these metals presents challenges, it has been shown that thin coating layers can be very e?cient in preserving their integrity and properties (Celle et al., 2018). Additionally, low-temperature, high-throughput deposition techniques, such as spatial atomic layer deposition (SALD) (Mu?oz-Rojas and MacManus-Driscoll, 2014; Khan et al., 2018), can be used to deposit these protective layers.

    关键词: solar cell,photovoltaic,transparent electrode,perovskite solar cell,organic photovoltaic,metal ?lm,organic solar cell

    更新于2025-09-23 15:21:01