- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Nitrogen-embedded small-molecule semiconducting materials: Effect of chlorine atoms on their electrochemical, self-assembly, and carrier transport properties
摘要: We reported three novel nitrogen-embedded small molecules 4a, 4b, and 4c, which were synthesized from the condensation reactions of benzo[1,2-b:4,5-b']difuran-2,6(3H,7H)-dione with 1-(2-ethylhexyl)-1H-pyrrolo[2,3-b]pyridine-2,3-dione, 6-chloro-1-(2-ethylhexyl)-1H-pyrrolo[2,3-b]pyridine-2,3-dione, or 4,6-dichloro-1-(2-ethylhexyl)-1H-pyrrolo[2,3-b]pyridine-2,3-dione, respectively. Their optical, electrochemical properties, self-assembly behavior, and carrier transport properties were studied by a range of experimental and theoretical methods, and the effect of chlorine atoms were well discussed. Energy levels of the highest occupied molecular orbitals and the lowest unoccupied ones for these molecular materials locate at ?5.92~?6.02 and ?4.25~?4.37 eV, respectively. Bottom gate/bottom contact field-effect transistors based on 4a, 4b, and 4c exhibited n-channel transport characteristics with the highest electron mobility of 7.57 × 10?3 cm2 V?1 s?1. Thin film microstructure investigations revealed 4a and 4c perform lamellar molecular packing with random orientations to the OTS-treated SiO2 substrate, while 4b conducts a highly crystalline, edge-on, lamellar packing though large grain boundaries exist in its thin film.
关键词: Isoindigo derivatives,Chlorine atoms,Small-molecule semiconductors,Electron mobilities,Organic field-effect transistors
更新于2025-09-23 15:23:52
-
Accelerated Discovery of Two-Dimensional Optoelectronic Octahedral Oxyhalides via High-Throughput <i>Ab Initio</i> Calculations and Machine Learning
摘要: Traditional trial-and-error methods are obstacles for large-scale searching of new optoelectronic materials. Here, we introduce a method combining high-throughput ab initio calculations and machine-learning approaches to predict two-dimensional octahedral oxyhalides with improved optoelectronic properties. We develop an effective machine-learning model based on an expansive data set generated from density functional calculations including the geometric and electronic properties of 300 two-dimensional octahedral oxyhalides. Our model accelerates the screening of potential optoelectronic materials of 5000 two-dimensional octahedral oxyhalides. The distorted stacked octahedral factors proposed in our model play essential roles in the machine-learning prediction. Several potential two-dimensional optoelectronic octahedral oxyhalides with moderate band gaps, high electron mobilities, and ultrahigh absorbance coefficients are successfully hypothesized.
关键词: band gaps,optoelectronic materials,two-dimensional octahedral oxyhalides,absorbance coefficients,electron mobilities,high-throughput ab initio calculations,machine learning
更新于2025-09-19 17:13:59
-
Tuning the Crystal Packing and Semiconductor Electronic Properties of 7,7’-Diazaisoindigo by Side-Chain Length and Halogenation
摘要: In the last years, the 7,7’-diazaisoindigo has emerged as a promising building block for semiconductor materials. In this work, we have studied different electronic properties which can be related to the semiconducting character of a family of 7,7’-diazaisoindigo derivatives. Concretely, we have analyzed the role of halogen substituents and different-length side chains on these properties calculated by means of the Density Functional Theory. In total, sixteen halogenated and non-halogenated diazaisoindigo derivatives were investigated. Four of these compounds were also synthetized and their X-ray structures were employed as starting points for the calculation of crystal structure of the rest of the novel compounds. In general, high electron transfer rate constants and electron mobilites were calculated for the studied 7,7’-diazaisoindigo derivatives, especially for bromine derivatives and compounds with long-side chains. The origin of these high rate constants mainly resides in the strong electronic couplings found for diazaisoindigo crystals in the π-stacking direction.
关键词: 7,7’-diazaisoindigo,side chains,electron mobilities,halogen substituents,Density Functional Theory,semiconductor materials,electron transfer rate constants,π-stacking direction
更新于2025-09-04 15:30:14