修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

143 条数据
?? 中文(中国)
  • Effect of energy band misalignment and morphology in In <sub/>2</sub> O <sub/>3</sub> -CNTs on electron transport in dye-sensitized solar cell

    摘要: This study provides important insights in performance degradation of In2O3-MWCNTs (0.4 and 0.5 wt.%)-based dye-sensitized solar cell (DSSC) using chemical-bath deposition technique. In2O3-MWCNTs (0.4 wt.%) exhibited the highest power conversion efficiency of 0.312% with low electron recombination rate, keff of 1256.72 s?1, and faster electron lifetime, seff of 0.80 ms compared to In2O3-MWCNTs (0.5 wt.%). The energy band misalignment between the conduction band of In2O3 photoanode and FTO caused severe electron recombination in In2O3-MWCNTs (0.5 wt.%). Therefore, this study can be used as a benchmark of 0.4 wt.% as the optimum concentration of MWCNTs in In2O3 for DSSC.

    关键词: electron transport,optical,dye-sensitized solar cells,Chemical-bath deposition,In2O3-CNTs

    更新于2025-09-23 15:21:01

  • [IEEE 2019 12th International Conference on Developments in eSystems Engineering (DeSE) - Kazan, Russia (2019.10.7-2019.10.10)] 2019 12th International Conference on Developments in eSystems Engineering (DeSE) - The Effects of Al-Doped ZnO Layer on the Performance of Organic Solar Cell

    摘要: The interface properties as well as the solar cell properties of inverted organic solar cells based on PCDTBT:PCBM blends were investigated using sol-gel aluminum doped ZnO as electron transport layers. The effects of Al concentration on the optical, structural and morphological properties of AZO layer were investigated. The results indicate that Al concentration has influenced the grain size growth leading to different surface morphology. High doping concentration resulted in higher charge carrier density and wider band gap. Using AZO layers in organic solar cell has increased their performance; the best performance was observed for the device with 0.5% Al-doped ZnO layer with efficiency of 3.24%, short circuit current density of 8.82mA.cm-2, fill factor of 0.46% and open circuit voltage of 0.81V, whereas the reference device has exhibited an efficiency of 2.9%, short circuit current density of 7.6mA.cm-2, fill factor of 0.48 % and open circuit voltage of 0.785V.

    关键词: Electron Transport layer,PCDTBT:PCBM,Organic solar cell,AZO thin films

    更新于2025-09-23 15:21:01

  • ??a??Extended Spiro Corea??Based Nonfullerene Electrona??Transporting Material for Higha??Performance Perovskite Solar Cells

    摘要: Electron transport materials (ETMs) play a significant role in perovskite solar cells (PSCs). However, conventional solution processable organic ETMs are mainly restricted to fullerene derivatives and it is challenging to obtain nonfullerene ETMs with satisfactory properties. In this work, a new organic semiconductor SPS-4F is synthesized by utilizing the classical spiro[fluorine-9′9-thioxanthene] unit to construct a π-extended core. Although spiro is normally used in hole transport materials, the new spiro derivative SPS-4F is successfully used as an ETM in inverted PSCs with power conversion efficiency over 20%. In addition, SPS-4F can strongly coordinate with MAPbI3 perovskite and lead to efficient surface trap passivation. The resultant PSCs exhibit excellent stability in air because of the hydrophobic property of SPS-4F. This work opens up opportunities to obtain a new family of ETMs based on spiro and paves a way to the fabrication of high-performance PSCs with low cost.

    关键词: spiro derivatives,perovskite solar cells,nonfullerenes,passivation,electron transport materials

    更新于2025-09-23 15:21:01

  • Cathode Interface Engineering Approach for a Comprehensive Study of the Indoor Performance Enhancement in Organic Photovoltaic

    摘要: Organic photovoltaic (OPV) has a prospective future as a reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (LED 2700K) performance of PTB7-Th:PC70BM inverted OPV with three different solution-processed electron transport layers (ETL = PFN, TiOx, and ZnO) were compared. The morphology, optical, and electrical measurements indicate the strong dependency of the OPV performance with the illumination conditions. The sample with PFN-ETL that shows the highest outdoor performance with power conversion efficiency (PCE) of 10.55% and the best-reported fill factor (FF) of 75.00% among PTB7-Th:PC70BM-based OPV, surprisingly exhibits the lowest performance when illuminated under 250–2000 lux LED 2700K. Meanwhile, the lowest outdoor performance performed by ZnO with PCE of 10.03% displays the best indoor performance with the PCE of 13.94% under 1000 lux and a PCE of up to 16.49% under 1750 lux LED lamp, respectively. The changes in the FF values can be estimated by incorporating the parasitic resistance effect due to the type ETL used. Besides, using impedance spectroscopy, we observed that indoor performance agreed well with the trend of charge collection efficiency.

    关键词: impedance spectroscopy,Organic photovoltaic,electron transport layers,PTB7-Th:PC70BM,indoor performance

    更新于2025-09-23 15:21:01

  • A two-fold engineering approach based on Bi2Te3 flakes towards efficient and stable inverted perovskite solar cells

    摘要: Perovskite solar cells (PSCs) are currently the leading thin-film photovoltaic technology owing to their high power conversion efficiency (PCE), as well as their low-cost and facile manufacturing process. Two-dimensional (2D) materials have been reported to improve both the PCE and the stability of the PSCs when incorporated across the device’s layered configuration. Hereby, a two-fold engineering approach is implemented in inverted PSCs by using ultra-thin Bi2Te3 flakes, i.e.: (1) to dope the electron transport layer (ETL) and (2) to form a protective interlayer above the ETL. Thorough steady-state and time-resolved transport analyses reveal that our first engineering approach improves the electron extraction rate and thus the overall PCE (+8% vs. reference cells), as a result of the favourable energy level alignment between the perovskite, the ETL and the cathode. Moreover, the Bi2Te3 interlayer through the second engineering approach, facilitates further the electron transport and in addition protects the underlaying structure against chemical instability effects leading to enhanced device’s performance and stability. By combining the two engineering approaches, our optimised PSCs reach a PCE up to 19.46% (+17% vs. reference cells) and retain more than 80% of their initial PCE, after the burn-in phase, over 1100 h under continous 1 Sun illumination. These performances are among the highest reported in literature for inverted PSCs.

    关键词: electron transport layer,Perovskite solar cells,Bi2Te3 flakes,stability,power conversion efficiency

    更新于2025-09-23 15:21:01

  • On-demand tuning of charge accumulation and carrier mobility in quantum dot solids for electron transport and energy storage devices

    摘要: Assemblies of colloidal quantum dots (CQDs) are attractive for a broad range of applications because of the ability to exploit the quantum con?nement effect and the large surface-to-volume ratio due to their small dimensions. Each application requires different types of assemblies based on which properties are intended to be utilized. Greater control of assembly formation and optimization of the related carrier transport characteristics are vital to advance the utilization of these materials. Here, we demonstrate on-demand control of the assembly morphology and electrical properties of highly crosslinked CQD solids through the augmentation of various assembly methods. Employment of electric-double-layer (EDL) gating on these assembly structures (i.e., an amorphous assembly, a hierarchical porous assembly, and a compact superlattice assembly) reveals their intrinsic carrier transport and accumulation characteristics. Demonstrations of high electron mobility with a high current modulation ratio reaching 105 in compact QD ?lms and of a record-high areal capacitance of 400 μF/cm2 in an electric-double-layer supercapacitor with very thin (<100 nm) QD hierarchical porous assemblies signify the versatility of CQDs as building blocks for various modern electronic devices.

    关键词: electron transport,electric-double-layer gating,energy storage devices,carrier mobility,colloidal quantum dots

    更新于2025-09-23 15:21:01

  • Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes

    摘要: Colloidal quantum dots and other semiconductor nanocrystals are essential components of next-generation lighting and display devices. Due to their easily tunable and narrow emission band and near-unity fluorescence quantum yield, they allow cost-efficient fabrication of bright, pure-color and wide-gamut light emitting diodes (LEDs) and displays. A critical improvement in the quantum dot LED (QLED) technology was achieved when zinc oxide nanoparticles (NPs) were first introduced as an electron transport layer (ETL) material, which tremendously enhanced the device brightness and current efficiency due to the high mobility of electrons in ZnO and favorable alignment of its energy bands. During the next decade, the strategy of ZnO NP doping allowed the fabrication of QLEDs with a brightness of about 200 000 cd/m2 and current efficiency over 60 cd/A. On the other hand, the known ZnO doping approaches rely on a very fine tuning of the energy levels of the ZnO NP conduction band minimum; hence, selection of the appropriate dopant that would ensure the best device characteristics is often ambiguous. Here we address this problem via detailed comparison of QLEDs whose ETLs are formed by a set of ZnO NPs doped with Al, Ga, Mg, or Li. Although magnesium-doped ZnO NPs are the most common ETL material used in recently designed QLEDs, our experiments have shown that their aluminum-doped counterparts ensure better device performance in terms of brightness, current efficiency and turn-on voltage. These findings allow us to suggest ZnO NPs doped with Al as the best ETL material to be used in future QLEDs.

    关键词: electron transport layer,doping,zinc oxide nanoparticles,light-emitting diodes,quantum dots

    更新于2025-09-23 15:21:01

  • Charge-transport layer engineering in perovskite solar cells

    摘要: Photovoltaic (PV) technology that directly converts the solar energy into electrical energy, is regarding as one of the most promising utilization technologies of renewable and clean energy sources. Nowadays, developing low-cost and highly efficient PV technology is a hot research topic both for academia and industry. In this context, perovskite solar cells (PSCs) with metal halide perovskites [ABX3, A = CH3NH3+ (MA+), or CH(NH2)2+ (FA+), Cs+; B = Pb2+, Sn2+; X = Cl?, Br?, I?] as light harvesting material, is in the spotlight due to its easy fabrication process and high power conversion efficiency (PCE) [1,2]. To date, the certified PCE has been already pushed up to 25.2% (https://www.nrel.gov/pv/module-efficiency.html), making PSC an auspicious candidate for a new generation of photovoltaics. In future days, how to eliminate the non-essential charge carrier recombination in the device, further push the PCE approaching the Shockley-Queisser theoretical efficiency limit (~35%) and enhance the device stability, will be formidable challenges and the focus in the next stage of research work.

    关键词: electron transport layer,hole transport layer,charge-transport layer,perovskite solar cells,power conversion efficiency

    更新于2025-09-23 15:19:57

  • Simulation and optimization of CH3NH3SnI3 based inverted perovskite solar cell with NiO as Hole transport material

    摘要: A planar perovskite solar cell (PSC) with p-i-n inverted structure is modeled and simulated using SCAPS software to determine the power output characteristics under illumination. The inverted structure is NiO/CH3NH3SnI3/PCBM where NiO is the hole transport layer (HTL), CH3NH3SnI3 is the perovskite absorber layer and PCBM is the electron transport layer (ETL). Simulation efforts are focused on thickness of three layers, defect density of interfaces, density of states, and metal work function effect on power conversion ef?ciency (PCE) of solar cell. For optimum parameters of all three layers, ef?ciency of 22.95% has been achieved. From the simulations, an alternate lead free inverted perovskite solar cell is introduced.

    关键词: Electron transport material,Transparent conducting oxide,Inverted perovskite solar cell,Hole transport material,Device simulation,Defect density

    更新于2025-09-23 15:19:57

  • Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering

    摘要: Numerical simulations can provide the physical insights into the carrier transport mechanism in the solar cells, and the factors influencing their performance. In this paper, perovskite solar cell (PSC) based on the mixed perovskite (CH3NH3Pb(I1-xBrx)3 has been numerically simulated using the SCAPS simulator. A comparative analysis of different electron transport layers (ETLs) based on their conduction band offsets (CBO) has been performed, while Spiro-OMeTAD was used as a hole transport layer (HTL). Among the proposed ETLs, CdZnS performed better and demonstrated the power conversion efficiency (PCE) of 25.20%. Also, the PCE of the PSC has been optimized by adjusting the doping concentrations in the ETL, Spiro-OMeTAD layer, and the thickness of the perovskite light absorber layer. It was found that the doping concentration of 1021 cm?3 for the CdZnS based ETL and 1020 cm?3 for Spiro-OMeTAD are the optimum concentrations values for demonstrating enhanced efficiency. A 600 nm thick perovskite layer has found to be appropriate for the efficient PSC design. For the initial guessing and numerical model validation, the photovoltaic data of a very stable (over one year with PCE ~13%) n-i-p structured (ITO/TiO2/CH3NH3Pb(I1-xBrx)3/Spiro-OMeTAD/Au) PSCs was used. These numerically simulated results signify the optimum performance of the photovoltaic device that can be further implemented to develop the highly efficient PSCs.

    关键词: The power conversion efficiency,Hole transport layer,Electron transport layer,Conduction band offset engineering,SCAPS,Perovskite solar cell

    更新于2025-09-23 15:19:57