修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

12 条数据
?? 中文(中国)
  • In Situ Enzyme Immobilization with Oxygen‐Sensitive Luminescent Metal–Organic Frameworks to Realize “All‐in‐One” Multifunctions

    摘要: Metal-organic frameworks (MOFs) for enzyme immobilization have already shown superior tunable and designable characteristics, however, their devisable responsive properties have rarely been exploited. Herein, we integrated a responsive MOF into MOF-enzyme composite to propose an “all-in-one” multifunctional composite with catalytic and luminescence functions implemented within a single particle. As a proof-of-concept, glucose oxidase (GOx) was in situ encapsulated within an oxygen (O2)-sensitive, noble-metal-free luminescent Cu(I) triazolate framework (MAF-2), namely GOx@MAF-2. Owing to the rigid scaffold of MAF-2 and the confinement effect, the GOx@MAF-2 composite showed significantly improved stability (shelf life to 60 days and heat-resistance up to 80 oC) with good selectivity and recyclability. More importantly, the integration of the O2-sensitivity of MAF-2 allowed the GOx@MAF-2 composite rapidly and reversibly response toward dissolved O2, which realized direct and ratiometric sensing of glucose without the needs of chromogenic substrates, cascade enzymatic reactions or electrode system. A high sensitivity with a detection limit of 1.4 μM glucose was achieved, and the glucose in human sera was accurately determined. The strategy opens a new application of MOFs and can be facilely extended to various MOF-enzyme composites due to the multifunctionality of MOFs.

    关键词: enzyme immobilization,metal-organic frameworks,all-in-one multifunctions,glucose detection,fluorometric sensor

    更新于2025-11-21 11:08:12

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Proposal of Millimeter-Wave Adaptive Glucose-Concentration Estimation System Using Complex-Valued Neural Networks

    摘要: This paper presents a novel approach for glucose concentration detection using a complex-valued neural network (CVNN) based on microwave transmission characteristics. The method leverages the dielectric properties of glucose solutions, which vary with concentration, to train a neural network that accurately predicts glucose levels from S-parameter measurements. Experimental results demonstrate high accuracy and robustness across a range of concentrations from 0 to 300 mg/dL.

    关键词: complex-valued neural network,dielectric properties,glucose detection,S-parameters,microwave sensing

    更新于2025-09-23 15:22:29

  • Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose

    摘要: A nonenzymatic electrochemical glucose sensor is described that was obtained by in situ photodeposition of high-density and uniformly distributed palladium nanoparticles (PdNPs) on a porous gallium nitride (PGaN) electrode. Cyclic voltammetric and chronoamperometric techniques were used to characterize the performance of the modified electrode toward glucose. In 0.1 M NaOH solution, it has two linear detection ranges, one from 1 μM to 1 mM, and another from 1 to 10 mM, and the detection limit is 1 μM. The electrode is repeatable, highly sensitive, fast and long-term stable. It was applied to the quantitation of serum glucose where it displayed accurate current responses.

    关键词: Electrochemical sensing,Gallium nitride,Photodeposition,Glucose detection,Palladium nanoparticles,Porous materials

    更新于2025-09-23 15:22:29

  • 1-D Metal-Dielectric-Metal Grating Structure as an Ultra-Narrowband Perfect Plasmonic Absorber in the Visible and Its Application in Glucose Detection

    摘要: The need for an easy to fabricate perfect and narrowband light absorber in the visible range of electromagnetic (EM) spectrum has always been in demand for many scientific and device applications. Here, we propose a metal-dielectric-metal (MDM) 1-D grating plasmonic structure as a perfect narrow band light absorber in the visible and its application in glucose detection. The proposed structure consists of a 1- D grating of gold on the top of a dielectric layer on a gold film. Optimization for dielectric grating index (n), grating thickness (t), grating width (W), and grating period (P) has been done to improve the performance of plasmonic structure by calculating its quality factor and figure-of-merit (FOM). The optimized plasmonic structure behaves as a perfect narrowband light absorber. The flexibility to work at a specific wavelength is also offered by the proposed structure through an appropriate selection of the geometrical parameters and refractive index of the dielectric grating. The equivalent RC model is used to understand different components of the proposed structure on the optical response. The absorption response of the structure is invariant to the incident angle. Moreover, the calculated absorbance of the proposed plasmonic structure is ~ 100% with a narrow full-width half maxima (FWHM) of ~ 2.8 nm. We have numerically demonstrated a potential application of the proposed MDM absorber as a plasmonic glucose sensor in the visible range with detection sensitivity in the range of 140 to 195 nm/RIU.

    关键词: Metal-dielectric-metal,Plasmons,Glucose detection,Optical sensors,Optical detectors,LC equivalent circuit

    更新于2025-09-23 15:21:01

  • A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection

    摘要: Porous laser-induced graphene (LIG) is an attractive and promising carbon material for electrochemical applications because it can immobilize various proteins, such as enzymes, antibodies, and receptors. However, poor inherent electrical properties caused by low surface conductivity is still a critical drawback for various applications. Here, we have proposed a surface modification method for the LIG electrode using acetic acid treatment via facile and practicable dipping technique. This simple acetic acid treatment dramatically increased the ratio of carbon-carbon bonds which effectively increased conductivity and decreased sheet resistance. Importantly, these unique properties also facilitated the stable and uniform dispersion of highly catalytic Pt nanoparticles (PtNPs) on LIG by avoiding the concentration of electric field on nanoparticles that can cause aggregation during electrodeposition. Finally, chitosan-glucose oxidase (GOx) composite was successfully immobilized onto the LIG/PtNPs electrode to fabricate a sweat glucose biosensor. The as-prepared LIG/PtNPs electrode exhibited a high sensitivity of 4.622 μA/mM as well as an ultra-low limit of detection (signal to noise ratio is 3) which was less than 300 nM and dynamic linear range up to 2.1 mM. Furthermore, we tested the variation of blood glucose level before and after meal using the amperometric response of the sensor which demonstrates the commercial potential of this unique sweat glucose biosensor.

    关键词: Sweat glucose detection,Laser-induced graphene (LIG),Acetic acid treatment,Ultra-sensitive and -low detection limit,Electrochemical biosensor

    更新于2025-09-23 15:19:57

  • Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface

    摘要: Glucose detection using Surface-enhanced Raman scattering (SERS) spectroscopy has aroused considerable attention due to its potential in the prevention and diagnosis of diabetes as a result of its unique molecular fingerprinting capability, ultrahigh sensitivity and minimal interference from water. Despite numerous solutions to improve the sensitivity of glucose detection, the development of a new SERS-based strategy to detect glucose with high sensitivity and low-cost is still required. In this study, we propose a simple and sensitive SERS-based plasmonic metasurface sensing platform for a glucose sandwich assay using self-assembled p-mercapto-phenylboronic acid (PMBA) monolayers on a gold nanodisk (Au-ND) metasurface and synthesized silver nanoparticles (Ag NPs) modified with a mixture of p-aminothiophenol (PATP) and PMBA. The localized near-field of the proposed plasmonic metasurface is markedly enhanced due to the coupling between the Au-ND and Ag NPs, which greatly improves detection sensitivity. The experimental results show that SERS signals of the glucose assay are significantly enhanced by more than 8-fold, in comparison with the SERS substrate of smooth Au film and Ag NPs. Moreover, the plasmonic metasurface-based glucose sandwich assay exhibits high selectivity and sensitivity for glucose over fructose and galactose. The developed plasmonic metasurface sensing platform shows enormous potential for highly sensitive and selective SERS-based glucose detection and opens a new avenue for scalable and cost-effective biosensing applications in the future.

    关键词: Surface-enhanced Raman scattering (SERS),glucose detection,gold nanodisk (Au-ND),p-mercapto-phenylboronic acid (PMBA),p-aminothiophenol (PATP),silver nanoparticles (Ag NPs),plasmonic metasurface

    更新于2025-09-23 15:19:57

  • TiO2 nanotubes modified with polydopamine and graphene quantum dots as a photochemical biosensor for the ultrasensitive detection of glucose

    摘要: Rapid and sensitive detection of glucose concentrations is very important for human health. Herein, an ultrasensitive photoelectrochemical dual-electron-acceptor biosensor was constructed by modifying the TiO2 nanotubes (NTs) with polydopamine (PDA) and amino-functionalized graphene quantum dots (N-GQDs)/GOx. PDA is grown on the top of the TiO2 NTs by the electropolymerization, and N-GQDs are loaded into the inner of the TiO2 NTs by a microwave-assisted method. The TiO2 NTs/PDA/N-GQD dual-electron-acceptor biosensor exhibited a highly enhanced photoelectric response, excellent electron–hole separation efficiency, low detection limit (0.015 mM), wide linear range (0–11 mM) and ultrahigh sensitivity (13.6 lA mM-1 cm-2). The prepared biosensor reflected high selectivity and excellent stability. This work also provides new insights into other optoelectronic biosensors.

    关键词: photochemical biosensor,polydopamine,graphene quantum dots,TiO2 nanotubes,glucose detection

    更新于2025-09-23 15:19:57

  • Noninvasive blood glucose detection by Quantum Cascade Laser

    摘要: Quantum Cascade Laser (QCL) was invented in late 90s as a promising mid-infrared light source and contributed to the field of industry, military, medicine, and biology. The room temperature operation, watt-level output power, compact size, and wide tuning capability of this laser advanced the field of noninvasive blood glucose detection by exploring transmission, absorption, and photoacoustic spectroscopy. This review provides a complete overview of the recent progress and technical details of these spectroscopy techniques, using QCL as an infrared light source for detecting blood glucose concentration for diabetic patients.

    关键词: transmission spectroscopy,Quantum Cascade Laser,mid-infrared,noninvasive blood glucose detection,photoacoustic spectroscopy,absorption spectroscopy

    更新于2025-09-19 17:13:59

  • [IEEE 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) - Berlin, Germany (2019.6.23-2019.6.27)] 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) - Functional Plasmonic Fiber-Optic Based Sensors Using Low-Cost Microsphere Photolithography

    摘要: This paper presents a technique for the low-cost fabrication of plasmonic fiber-optic based refractive-index sensors. The Microsphere Photolithography (MPL) technique was used to pattern nanoholes in a thin aluminum to create Extraordinary Optical Transmission (EOT) based sensors on the cleaved tip of SMF-28 optical fibers. This technique uses self-assembled microspheres as an optical element and facilitates very low-cost patterning of the plasmonic probes. As the refractive index of the media changes, the reflected spectrum of optical fiber changes. The fabricated sensors were immersed in water with different concentrations of glucose, and the lowest detection limit was found to be 33 mg/mL.

    关键词: Fiber,Glucose detection,Microsphere photolithography,Plasmonic sensor

    更新于2025-09-12 10:27:22

  • In-situ synthesis and enhanced upconversion luminescence of Y2O3/Y2O2S:Yb3+,Er3+/Tm3+ nanocomposites by reduction of Y2O3:Yb3+,Er3+/Tm3+

    摘要: Y2O3/Y2O2S:Ln3+ (Ln = Yb,Er and Yb,Tm) nanocomposites with enhanced upconversion luminescence were successfully prepared by combining hydrothermal with in-situ synthesis method. Under 980 nm excitation, the upconversion luminescence intensity of Y2O3/Y2O2S:Ln3+ increased, and then declined with the rising amount of sulfur powder. Especially, the Y2O3/Y2O2S:Ln3+ nanocomposites can emit brighter upconversion luminescence than those of Y2O3:Ln3+ and Y2O2S:Ln3+. In terms of Y2O3/Y2O2S:Yb3+,Er3+ nanocomposites which were prepared with 0.025g sulfur powder, an unusual 4G11/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ could be observed. Besides, we have constructed a simple upconversion Y2O3/Y2O2S:Yb3+,Er3+@Au nanocomposite, which can be used for rapid sensing of glucose. The limit of detection of glucose level which based on Y2O3/Y2O2S:Yb3+,Er3+@Au was only 0.066 μmol/L. The proposed approach, which we have mentioned above, holds a great practical value for diabetes mellitus detection and clinical diagnosis.

    关键词: B. Upconversion luminescence,A. Y2O3/Y2O2S:Yb3+Er3+,D. Glucose detection

    更新于2025-09-10 09:29:36