- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Graphene quantum dot based charge-reversal nanomaterial for nucleus-targeted drug delivery and efficiency controllable photodynamic therapy
摘要: Graphene quantum dots (GQD), the new zero-dimensional carbon nanomaterial, has been demonstrated as a promising material for biomedical applications due to its good biocompatibility and low toxicity. However, the integration of multiple therapeutic approaches into a nano-sized platform based on the GQD has not been explored yet to our best knowledge. In this report, we regulate the generation of reactive oxygen species (ROS) when using the GQD as a photosensitizer by varying the doping amount of nitrogen atoms to achieve efficiency controllable photodynamic therapy (PDT). On the other hand, charge-reversal (3-Aminopropyl) triethoxysilane (APTES) was employed to conjugate on the surface of GQD for nucleus targeting drug delivery for the first time. The treatment outcome of produced ROS and nucleus-targeting drug delivery was investigated by fluorescence imaging. The results demonstrated that the N-GQD-DOX-APTES in dual roles as a drug carrier and photosensitizer could achieve nucleus-targeting delivery and strong ROS production simultaneously. This approach provides a promising strategy for the development of multifunctional therapy in one nano platform for biomedical applications.
关键词: nucleus-targeted drug delivery,Graphene quantum dots,nitrogen doped graphene quantum dots,charge-reversal,photodynamic therapy
更新于2025-11-21 11:24:58
-
Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies
摘要: A rapid, facile and label-free sensing strategy is developed for the detection of dopamine (DA) in the real samples by exploiting nitrogen-doped graphene quantum dots (N-GQDs) decorated on Au nanoparticles (Au@N-GQD). The as-grown Au@N-GQD exhibits strong blue fluorescence at room temperature and the fluorescence intensity is drastically quenched in presence of DA in neutral medium. The mechanistic insight into the DA sensing by Au@N-GQDs is explored here by careful monitoring of the evolution of the interaction of Au NPs and N-GQDs with DA under different conditions through electron microscopic and spectroscopic studies. The highly sensitive and selective detection of DA over a wide range is attributed to the unique core-shell structure formation with Au@N-GQD hybrids. The quenching mechanism involves the ground state complex formation as well as electron transfer from N-GQDs. The presence of Au NPs in Au@N-GQD hybrids accelerates the quenching process (~14 fold higher than bare N-GQDs) by the formation of stable dopamine-o-quinone (DQ) in this present detection scheme. The fluorescence quenching follows the linear Stern-Volmer plot in the range 0-100 μM, establishing its efficacy as a fluorescence-based DA sensor with a limit of detection (LOD) 590 nM, which is ~27 fold lower than the lowest abnormal concentration of DA in serum (16 μM). This sensing scheme is also successively applied to trace DA in Brahmaputra river water sample with LOD 480 nM including its satisfactory recovery (95-112%). Our studies reveal a novel sensing pathway for DA through the core-shell structure formation and it is highly promising for the design of efficient biological and environmental sensor.
关键词: Dopamine,Fluorescence quenching,Nitrogen-doped graphene quantum dots,Colorimetric sensing,Core-shell structure,Gold nanoparticles
更新于2025-11-21 11:01:37
-
Microwave-assisted synthesis of graphene quantum dots and nitrogen-doped graphene quantum dots: Raman characterization and their optical properties
摘要: In this report we will present completely new results on the improvement of the graphene quantum dots (GQDs) and nitrogen-doped graphene quantum dots (N-GQD) production method, using the microwave with different power levels and durations, from citric acid and urea. This is a new and unprecedented method of fabrication. The use of microwave has allowed ultra-fast fabrication of GQDs and nitrogen doped GQDs. These GQDs had their characteristics identi?ed by Raman scattering spectra for the characteristic C–C graphene vibration mode (G-peak) and defects of GQDs (D-peak). The absorption spectra of GQDs samples were fabricated under different conditions, with the expectation of different sizes, to be compared and analyzed. These absorption spectra were also compared with those of the N-GQD produced under the same conditions. The absorption mechanism of GQDs and N-GQD will be presented in detail. Measurements of the photoluminescence (PL) spectra in GQDs and N-GQD have also been recorded and analyzed. The ?uorescence mechanism will be presented, explained, and compared with other international publications of other authors. Some of the TEM and HR-TEM images of these two samples were also presented to con?rm the shape, size and in-plane spacing lattice of the GQD structure.
关键词: graphene quantum dots (GQDs),PL spectra,nitrogen-doped graphene quantum dots (N-GQD),microwave,Raman spectra,absorption spectra
更新于2025-11-19 16:56:42
-
Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions
摘要: Sulfur and nitrogen co-doped graphene quantum dots (SN-GQDs) were synthesized through an efficient infrared (IR)-assisted pyrolysis of glucose, urea, and ammonia sulfate at 260°C. These served as a highly selective probe for the sensing of Hg2+ ions in an aqueous solution. The IR technique can also prepare N-doped graphene quantum dots (N-GQDs), which have been compared with SN-GQDs for their fluorescence (FL) quenching sensitivities by Hg2+ ions. The FL intensities of both GQDs show decreasing functions of concentration of Hg2+ ions within the entire concentration ranges of 10 ppb?10 ppm. The sensitivity of SN-GQD is 4.23 times higher than that of N-GQD, based on the calculation of the Stern-Volmer equation. One inter-band gap structure of SN-GQDs for the detection of mercury ions is proposed. The S doping can coordinate with phenolic groups on the edge of SN-GQDs (i.e., the formation of (CxO)2Hg2+) and induce the cutting off or alleviation of photon injection paths, thereby leading to significant FL quenching. This work proves that SN-GQD offers sufficient sensitivity for probing the quality of drinking water to ensure that it contains less than 10 ppb of Hg2+ ions, as per the World Health Organization standard.
关键词: Fluorescence quenching,Nitrogen doping,Infrared-assisted heating,Graphene quantum dots,Sulfur doping,Mercury detection
更新于2025-11-19 16:56:42
-
Nitrogen-doped graphene quantum dots: Optical properties modification and photovoltaic applications
摘要: In this work, we utilize a bottom-up approach to synthesize nitrogen self-doped graphene quantum dots (NGQDs) from a single glucosamine precursor via an eco-friendly microwave-assisted hydrothermal method. Structural and optical properties of as-produced NGQDs are further modified using controlled ozone treatment. Ozone-treated NGQDs (Oz-NGQDs) are reduced in size to 5.5 nm with clear changes in the lattice structure and ID/IG Raman ratios due to the introduction/alteration of oxygen-containing functional groups detected by Fourier-transform infrared (FTIR) spectrometer and further verified by energy dispersive X-ray spectroscopy (EDX) showing increased atomic/weight percentage of oxygen atoms. Along with structural modifications, GQDs experience decrease in ultraviolet–visible (UV–vis) absorption coupled with progressive enhancement of visible (up to 16 min treatment) and near-infrared (NIR) (up to 45 min treatment) fluorescence. This allows fine-tuning optical properties of NGQDs for solar cell applications yielding controlled emission increase, while controlled emission quenching was achieved by either blue laser or thermal treatment. Optimized Oz-NGQDs were further used to form a photoactive layer of solar cells with a maximum efficiency of 2.64% providing a 6-fold enhancement over untreated NGQD devices and a 3-fold increase in fill factor/current density. This study suggests simple routes to alter and optimize optical properties of scalably produced NGQDs to boost the photovoltaic performance of solar cells.
关键词: photovoltaics,optical properties,ozone treatment,nitrogen-doped graphene quantum dots,solar cells
更新于2025-11-19 16:56:42
-
Graphene quantum dots nanoparticles changed the rheological properties of hydrophilic gels (carbopol)
摘要: Graphene quantum dots (GQDs) have special properties at nanosize zone, as highly tunable photoluminescence, electrochemiluminescence and multiphoton excitation, that make them promising nanoagents for drug delivery systems. In this direction the use of gels to formulate nanodrugs, for both in vitro and in vivo assay is required. However, the presence of GQDs nanoparticles may affect the rheological parameters. These changes may influence the biological behavior of this formulation as change the pharmacological application. In this study we evaluated the effect of adding GQDs to carbopol gels formulation, in terms of rheological properties. In this direction, carbopol gels alone and loaded with GQDs were studied. The results of pure carbopol formulation showed a non-Newtonian, pseudo-plastic fluid without thixotropic behavior. Otherwise, the presence of GQDs in the carbopol formulation (carbopol loaded with GQDs) caused a reduction on the viscosity and modified the interactions between the polymer chains leading to the transformation of the initial gel into a viscous fluid. This alteration can change drastically the use of these formulations, especially for drug delivery, since slightly changes in viscosity can influence the occlusion, retention and permeability of these nanoparticles into biological barriers.
关键词: Rheological properties,Drug delivery,Graphene quantum dots,Hydrogels,Carbopol
更新于2025-11-19 16:56:42
-
Quantum Yield Enhancement in Graphene Quantum Dots via Esterification with Benzyl Alcohol
摘要: The quantum yield of graphene quantum dots was enhanced by restriction of the rotation and vibration of surface functional groups on the edges of the graphene quantum dots via esterification with benzyl alcohol; this enhancement is crucial for the widespread application of graphene quantum dots in light-harvesting devices and optoelectronics. The obtained graphene quantum dots with highly graphene-stacked structures are understood to participate in π–π interactions with adjacent aromatic rings of the benzylic ester on the edges of the graphene quantum dots, thus impeding the nonradiative recombination process in graphene quantum dots. Furthermore, the crude graphene quantum dots were in a gel-like solid form and showed white luminescence under blue light illumination. Our results show the potential for improving the photophysical properties of nanomaterials, such as the quantum yield and band-gap energy for emission, by controlling the functional groups on the surface of graphene quantum dots through an organic modification approach.
关键词: Optoelectronics,Esterification,Quantum yield,Benzyl alcohol,Graphene quantum dots
更新于2025-11-19 16:46:39
-
Dy(III)-induced aggregation emission quenching effect of single-layered graphene quantum dots for selective detection of phosphate in the artificial wetlands
摘要: Carbon quantum dots (CQDs), prepared by one-step hydrothermal treatment of perylene-3,4,9,10-tetra-carboxylic dianhydride (PTCDA) and triethylamine (TEA), could be exfoliated or delaminated into single-layered graphene quantum dots (s-GQDs) with methanol for the first time, with fluorescence (FL) emission at 500 nm when excited at 417 nm. The s-GQDs, with more sufficient carboxyl groups on the surface than CQDs, could be induced to be aggregated by metal ion dysprosium (Dy3+), resulting in aggregation-induced emission quenching effect subsequently. However, the presence of phosphate (PO4 3-) destroys the Dy3+-induced aggregates of s-GQDs owing to the strong coordination between Dy3+ and PO4 3-, inducing the FL emission recovery of the s-GQDs and providing selective detection method of PO4 3- in the artificial wetlands with the linear range of 0.2–30 μM and determination limit of 0.1 μM (3σ).
关键词: s-GQDs-Dy3+ system,Phosphate detection,Single-layered graphene quantum dots,Carbon quantum dots
更新于2025-11-14 17:04:02
-
Determination of Thiourea by On–Off Fluorescence Using Nitrogen-Doped Graphene Quantum Dots
摘要: A thiourea-detecting fluorescence sensor with Hg2t as a switch was developed using nitrogen-doped graphene quantum dots (N-GQDs). The surface of N-GQDs had many organic functional groups on which Hg2t was effectively bound and turned off the fluorescence of the N-GQDs. The fluorescence of N-GQDs was turned on by the thiol functional group of thiourea that bound strongly with Hg2t and formed Hg2t/thiourea complexes. After constructing the sensor, the experimental conditions and parameters, such as the pH and Hg2t concentration, were investigated and optimized. Under the optimum conditions, the constructed fluorescence sensor showed high sensitivity to thiourea at concentrations from 0.5 to 14 mM with a low detection limit of 41.7 nM. The sensor also exhibited high specificity, excellent stability, and good reproducibility so that the determination of thiourea in various samples had acceptable values with good recoveries from 99% to 106%. The relative standard deviation was less than 4.1% (n ? 3).
关键词: thiourea,Fluorescence,nitrogen-doped graphene quantum dots (N-GQDs),Hg2t,sensor
更新于2025-11-14 17:04:02
-
S, N co-doped graphene quantum dots-induced ascorbic acid fluorescent sensor: Design, characterization and performance
摘要: In this work, new detection route for ascorbic acid was designed. First, highly luminescent sulfur and nitrogen doped graphene quantum dots (S,N-GQDs) were prepared via simple hydrothermal method using citric acid and thiourea as the C, N and S sources respectively. The prepared S,N-GQDs are characterized by XRD, HRTEM, FTIR, EDS and PL. Investigations showed that prepared S,N-GQDs have a good photostability and excitation-dependent emission fluorescence. Prepared S,N-GQDs showed maximum excitation wavelength and emission wavelength at 400 and 462nm, respectively. In the following, prepared S,N-GQDs were applied as a photoluminescence probe for detection of ascorbic acid (AA). The designed sensor was based on “off-on” detection mode. The developed sensor had a linear response to AA over a concentration range of 10-500μM with a detection limit of 1.2μM. The regression equation is Y = 0.0014 X+1.2036, where Y and X denote the fluorescence peak intensity and AA concentration, respectively.
关键词: Graphene quantum dots,Quantum confinement,Fluorescence sensor,Nanostructures,Water-soluble vitamin,Quenching
更新于2025-11-14 15:32:45