- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Performance modeling and analysis of high-concentration multi-junction photovoltaics using advanced hybrid cooling systems
摘要: This paper presents the performance modeling and analysis of the high-concentration multi-junction photovoltaic cells, using either constant-width one-section or two-stepwise microchannels-jet impingement hybrid cooling system. The performance simulation and analysis of the cells are conducted using a three dimensional-Computational Fluid Dynamics program for various operating parameters, including water flow rate (100–1300 mL/min.), inlet water temperature (10–80 °C), and heat flux (10–90 W/cm2 corresponding to concentration ratios of 250–2250). The thermal and electrical characteristics of the cells are correlated in dimensionless form as functions of the direct normal irradiance and the operating and geometrical parameters of the hybrid cooling systems. The developed high-quality explicit performance model correlations assist in the design, performance prediction, and selection of operation strategy of photovoltaic cells. The results indicated that the generated and net output power is directly proportional to the applied heat flux (concentration ratio) and inversely proportional to the inlet water temperature. Temperature uniformity of the photovoltaic base enhances with the water flow rate, deteriorates with heat flux, and less affected by the inlet temperature, particularly for the two-sections cooling system. The pumping power increases with water flow rate and decreases as both inlet temperature or heat flux increases. Heat transfer characteristics enhance significantly with water flow rate, moderately with inlet water temperature and slightly with heat flux.
关键词: Photovoltaic performance modeling,High-concentration multi-junction photovoltaic,Operating parameters,Microchannels heat sink,Electrical power correlations
更新于2025-09-23 15:21:01
-
Thermal management of concentrator photovoltaic systems using nanoa??enhanced phase change materialsa??based heat sink
摘要: Temperature regulation of concentrator photovoltaic systems is essential in reducing operating temperatures with higher system performance. A new nano-enhanced phase change material, with multi-cavity heat sinks, integrated with a concentrator photovoltaic (CPV) system is developed. The multi-cavity heat sink includes a single-, triple-, and quintuple-cavity configuration in both parallel and series pattern filled with n-octadecane PCM and graphene nanoparticle additives with 2% and 5 wt%. Numerical simulations are performed using the developed two-dimensional model for photovoltaic layers integrated with the nano-enhanced phase change material-based heat sink. The predicted results are compared with the available numerical results and measurements. Results indicate that increasing the number of parallel cavities, along with weight fraction of nanoparticles, significantly improves the thermal conductivity, and consequently attains better performance for the CPV system. Using a parallel quintuple-cavity configuration, with 5 wt% NPCM, achieves maximum reduction in the solar cell mean temperature along with the best temperature uniformity compared to other configurations. At a concentration ratio of 20, the thermal efficiency is 65%, the electrical efficiency is about 10%, and the output electrical power of the system is 235 W per m width of the cell. On the contrary, using a series pattern of the heat sink has an unfavorable effect on the mean solar cell temperature, as well as on electrical efficiency and thermal performance of the CPV system. The obtained result can assist in identifying the best possible design of the heat sink in addition to the most appropriate selection of PCM and nanoparticle additives.
关键词: electrical efficiency,graphene nanoparticles,concentrator photovoltaic system,multi-cavity heat sink,nano-enhanced phase change materials
更新于2025-09-23 15:21:01
-
Temperature uniformity enhancement of densely packed high concentrator photovoltaic module using four quadrants microchannel heat sink
摘要: The dense solar radiation received by a high concentration photovoltaic module (HCPVM) causes a high cell temperature. In this module, multiple solar cells were electrically connected in both series and parallel. The higher temperature of the solar cell in the series string limits the generated power for the whole string. Therefore, it is crucial to employ a uniform cooling mechanism for higher electrical performance along with a longer lifespan. The uniform cooling is required to attain safe operating temperature and prevent the hot spot formation. Hence, in the current work, a four-compartment microchannel heat sink is proposed for the thermal management of HCPVM under high solar concentration of 1000 suns (1 sun = 1000 W/m2). A three-dimensional (3D) conjugate heat transfer model with exergy analysis is developed and validated. This model was used to investigate the effect of inlet and outlet orientation of four quadrants microchannel heat sink as a cooling method for HCPVM. Eight different orientations of parallel-flow and counter-flow conditions were investigated and compared in terms of temperature non-uniformity, module power, and exergy performance. The results showed that the inlet and outlet orientation was a key role affecting the module temperature non-uniformity. For the counter-flow operated heat sinks, the HCPVM can be operated under a temperature non-uniformity of 3.1 °C at total inlet module mass flowrate of 350 g/min and solar concentration ratio of 1000 suns. In addition, the attained HCPVM electrical, thermal, and overall exergy efficiency were 37.2%, 8.2%, and 45.4% respectively at the same conditions.
关键词: Densely packed module,Solar concentration ratio,Exergy analysis,Microchannel heat sink,Uniform cooling
更新于2025-09-23 15:21:01
-
Estimation of the performance limits of a concentrator solar cell coupled with a micro heat sink based on a finite element simulation
摘要: Concentrated photovoltaic (CPV) technology makes use of cheap optical elements to amplify the irradiance and focus it on small-sized solar cells enabling the extraction of higher amounts of electricity. However, increasing the solar concentration raises the temperature of the PV cell which can deter its performance and can also cause its failure. To combat this issue both active and passive cooling mechanisms are utilized for different types of CPV systems. In this study, we determine the limits of passive cooling systems and establish when an active cooling system is needed based on the recommended operating temperature of the solar cell. We investigate the temperature characteristics of the solar cells bonded to three different substrate materials under different solar concentrations. Results showed that cell temperature is linearly dependent on the concentration ratio and ambient temperature independent of the substrate material. Further, the integration of a micro-finned heatsink results in higher heat dissipation by 25.32%, 23.13%, and 22.24% in comparison with a flat plate heatsink for Direct Bonded Copper (DBC), Insulated Metal Substrate (IMS), and Silicon Wafer (Si wafer) substrates respectively. The low thermal resistance of the IMS substrate compared to the DBC and the Si wafer substrates result in the best thermal performance in terms of maintaining the cell temperature < 80 °C and allowing a wider range of high concentration ratio.
关键词: Concentration Ratio,Passive cooling,micro fin heat-sink,finite element,Concentrating Photovoltaic,flat-plate heat-sink
更新于2025-09-23 15:19:57
-
Comparative analysis of different cooling fin types for countering LED luminaires' heat problems
摘要: A significant problem with high-power LED luminaires is heat. Aluminum heat sinks have been extensively used as a solution. The most common method for heat sinks that increases surface area uses fins. In the present study, pin- and plate-fins were compared and it was observed that, in equal surface areas, better cooling was achieved by pin-fins. Thus, the study’s concentration narrowed to pin-fins and the results of different pin-fins were compared. Simulations of a sample group were conducted by using different numbers of fins, and the number of fins giving the lowest Tmax value (the highest junction point temperature) was accepted to be optimum for each group; then the optimum values were compared among the different groups. Keeping the base width of fins constant, optimum values were obtained for the same number of fins when the fin height was changed. However, keeping fin height constant, surface areas of optimum values and measured Tmax values were very close to one another other, even if the base width of fins was changed. The results have practical significance in designing high-power LED luminaires.
关键词: LED cooling,fin height,junction point temperature,base width,High-power LED luminaire,plate-fin heat sink,pin-fin heat sink
更新于2025-09-23 15:19:57
-
Thermal design for the package of high-power single-emitter laser diodes
摘要: An analytical three-dimensional thermal model is employed to perform the thermal design for the package of high-power single-emitter laser diodes. Thermal design curves for the heat sink and submount are presented in detail, for laser diodes subjected to several convective heat transfer conditions on the bottom of the heat sink. An effective heat spreading angle is proposed to characterize thermal design for the heat sink. A differential heat spreading angle is proposed to clearly manifest heat flow in the packages. Full width and length at 90% energy are introduced to reveal the requirement of submount width and length, respectively. The impact of coefficient of thermal expansion (CTE)-matched sandwiched submount on total heat dissipation is studied. Special discussion is presented for a commercial F-Mount laser diode, and it is found that current heat sink design leads to a 27.4% increase in thermal resistance relative to a free lateral diffusion package.
关键词: Thermal resistance,Heat spreading angle,Submount,Heat sink,Thermal design,High-power laser diodes
更新于2025-09-23 15:19:57
-
Indoor and outdoor characterization of concentrating photovoltaic attached to multi-layered microchannel heat sink
摘要: Concentrating Photovoltaic technology is a promising option in power generation using the photovoltaics compared to the conventional ?at PV system. This study investigates the performance of a high concentrated photovoltaic single solar cell module attached to a multi-layered microchannel heat sink. The system has been tested the ?rst time experimentally both at indoor and outdoor conditions. The indoor characterization of the system investigated the e?ect of varying the number of the layers of the heat sink and the ?ow rate of the ?uid electrically and thermally. The experiments show that varying the number of the heat sink layers from 1-layer to 3-layers increase the maximum electrical generation by 10% and reduces the cell temperature by 3.15 °C under the same ?uid ?ow rate of 30 ml/min. The outdoor experiments show the maximum output electrical generation of the system of 4.60 W and the short circuit current of 1.96 A. The maximum solar cell temperature was maintained below 61 °C where the extracted heat of the system was 12.85 W which represents of 74.9% of the total generated power.
关键词: Heat sink,Concentrating photovoltaic,Thermal regulation,Multi-layered microchannel
更新于2025-09-23 15:19:57
-
Thermal management of high-power LED based on thermoelectric cooler and nanofluid-cooled microchannel heat sink
摘要: Effective thermal management for light-emitting diodes (LEDs) is critical, as temperature significantly affects their lifetime and performance. In this study, a system combining a thermoelectric cooler (TEC) and a microchannel heat sink (MHS) is investigated experimentally for thermal management of high-power LEDs. Nanofluids and water are used as coolant. The LED substrate temperature (Ts) is measured at various TEC powers, nanofluid concentrations, ambient temperatures of LED (Ta), and ambient temperatures of the fluid radiator (Ta,f). The effective thermal resistance (Rs-fa) of the LED substrate to the ambient of the fluid radiator is analyzed. Correlations of Ts and Rs-fa are obtained. Results show that the Ts is lowest when the TEC works at its rated power, and Ts is lower than Ta at Ta ≥ 55 °C. Using nanofluids instead of water as coolant reduces the Ts by up to 18.5 °C and decreases the thermal resistance by as much as 42.4%. The MHS heat transfer capacity is increased by 38.6%. The Ta,f exhibites greater influence on Ts compared to Ta. Results show that favorable performance of the thermal management of the high-power LED is obtained by the proposed nanofluid-cooled TEC-MHS system, particularly at high ambient temperature of LED.
关键词: Thermal management,Nanofluid,LED,Thermoelectric cooler,Thermal resistance,Microchannel heat sink
更新于2025-09-23 15:19:57
-
Analysis and Optimization of a Microchannel Heat Sink with V-Ribs Using Nanofluids for Micro Solar Cells
摘要: It is crucial to control the temperature of solar cells for enhancing e?ciency with the increasing power intensity of multiple photovoltaic systems. In order to improve the heat transfer e?ciency, a microchannel heat sink (MCHS) with V-ribs using a water-based nano?uid as a coolant for micro solar cells was designed. Numerical simulations were carried out to investigate the ?ows and heat transfers in the MCHS when the Reynolds number ranges from 200 to 1000. The numerical results showed that the periodically arranged V-ribs can interrupt the thermal boundary, induce chaotic convection, increase heat transfer area, and subsequently improve the heat transfer performance of a MCHS. In addition, the preferential values of the geometric parameters of V-ribs and the physical parameters of the nano?uid were obtained on the basis of the Nusselt numbers at identical pump power. For MCHS with V-ribs on both the top and bottom wall, preferential values of V-rib are rib width d/W = 1, ?are angle α = 75°, rib height hr/H = 0.3, and ratio of two slant sides b/a = 0.75, respectively. This can provide sound foundations for the design of a MCHS in micro solar cells.
关键词: nano?uid,heat transfer enhancement,micro solar cell,microchannel heat sink,V-ribs
更新于2025-09-19 17:13:59
-
Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources
摘要: Limiting junction temperature Tj and maintaining its low value is crucial for the lifetime and reliability of semi-conductive light sources. Obtaining the lowest possible temperature of Tj is especially important in the case of LED panels, where in a short distance there are many light sources installed, between which there occurs mutual thermal coupling. The article presents results of simulation studies connected with the in?uence of construction and ambient factors that in?uence the value of junction temperature of exemplary LED panel sources. The in?uence of radiator’s construction, printed circuit boards, as well as the in?uence of ambient factors, such as ambient temperature Ta and air ?ow velocity v were subjected to the analysis. Numerical calculations were done in the FloEFD software of the Mentor Graphics company, which is based on computational ?uid dynamics (CFD). For construction of the LED thermal panel model the optical e?ciency ηo and real thermal resistance Rthj-c were determined in a laboratory for the applied light sources.
关键词: CFD,LED,junction temperature,heat sink
更新于2025-09-16 10:30:52