修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

9 条数据
?? 中文(中国)
  • Characteristics of multi-pass narrow-gap laser welding of D406A ultra-high strength steel

    摘要: A universal and applicable method to predict bonding quality in narrow-gap laser beam filler wire welding of D406A ultra-high strength steel was presented. Defect-free joint could be achieved under the predicted optimal welding condition, while the production efficiency of narrow-gap laser beam filler wire welding under optimized welding condition was about 3.75 times that of traditional tungsten arc welding currently used in practical industry. Compared with the tungsten arc welding joint, microstructure in the fusion zone of laser welded joint was more uniform, which brought out a less fluctuation in the microhardness of fusion zone along the thickness direction. The tensile strength of as-welded laser welding joint was slightly higher than that of as-welded tungsten arc welding joint while the elongation of the former increased by 15.9% over that of the latter. A binocular stereo three-dimensional scanning method was adopted to compare the residual distortion of D406A joints between laser welding and tungsten arc welding. Notably, the distortion of laser welded joint was about 21% of that of the tungsten arc welding joint. Narrow-gap laser filler wire welding is a feasible substitute for conventional tungsten arc welding in the fabrication of welded construction of D406A steel.

    关键词: ultra-high strength steel,welding distortion,filler wire,narrow-gap laser beam welding,microstructure

    更新于2025-11-28 14:24:20

  • Influence of laser weld shape on mechanical and fatigue behaviour of single lap laser welded joints

    摘要: Traditional manufacturing processes, like arc welding and resistance spot welding, are still the main welding processes to join structural components used across the on/o?-road vehicle industry. Due to the abundance of data, experiences and insights over the decades of usage, lot of fatigue design data has been generated for different joint geometries produced using these methods. The laser welding process has excellent capabilities to join thin sheet metal structures with minimum heat input resulting into lower deformation and improved productivity that offers significant benefit as compared to the arc and resistance welding processes. However, due to the agility of designing joint configurations and limited availability of understanding regarding the fatigue behaviour of laser welded joints, the need arises for the fatigue design data. Most of the research presents the use of straight linear shape laser welds and limited knowledge exist regarding the influence of shape of laser welds on mechanical and fatigue performance of the laser welded joints. The laser welded joints produce small notch like radius at the root of laser weld which could act as a stress raiser causing early crack initiation. For this work, C-shape laser weld has been selected as the geometric shape in comparison to the straight linear shape of laser weld produced on a series of single lap joints. Detailed fatigue experimental investigation has been carried out for linear and C-shape laser welded joints tested in 3 different orientations with respect to the applied cyclic load and several different R-ratio’s and the results are compared. The metallurgical studies have been carried out to understand the failure mode and micro-hardness variations across the weld and heat affected zone. Further, the residual stress profiles have been compared for the C-shape laser weld with the linear welds using detailed X - Ray Diffraction based residual stress measurement.

    关键词: Laser Weld,Ultra-high strength steel,C Shape,Crack propagation,High strength low alloy steel,Crack initiation

    更新于2025-09-23 15:21:01

  • A review on the laser welding of coated 22MnB5 press-hardened steel and its impact on the production of tailor-welded blanks

    摘要: The current demand for vehicles with high fuel efficiency, improved safety and enhanced crash-worthiness qualities is being met by making use of high strength components with tailored mechanical properties which are made using tailor-welded blanks. During their production, the surface of the blank needs to be protected against oxidation and decarburisation. Protective coatings are used to protect the steel surface, with Aluminium-Silicon or Zinc-based coatings being the most popular. This work provides a review on the state-of-the-art as well as the issues associated with the laser welding of coated 22MnB5 grade steel to be used in the production of tailor-welded blanks. The paper provides a summary of existing solutions available to overcome these issues while discussing their limitations and the potential for future work.

    关键词: Fibre laser welding,tailor-welded blanks,22MnB5,Zn-Coating,press-hardened steel,ultra-high strength steel,Al–Si coating,hotstamped parts

    更新于2025-09-23 15:21:01

  • Laser-arc hybrid welding of 12- and 15-mm thick structural steel

    摘要: High-power lasers are very effective in welding of plates thicker than 10 mm due to the keyhole mode. High-power intensity generates a vapor-filled cavity which provides substantial penetration depth. Due to the narrow and deep weld geometry, there is susceptibility to high hardness and weld defects. Imperfections occur due to keyhole instability. A 16-kW disk laser was used for single-pass welding of 12- to 15-mm thick plates in a butt joint configuration. Root humping was the main imperfection and persisted within a wide range of process parameters. Added arc source to the laser beam process may cause increased root humping and sagging due to accelerated melt flow. Humping was mitigated by balancing certain arc and other process parameters. It was also found that lower welding speeds (< 1.2 m/min) combined with lower laser beam power (< 13 kW) can be more positive for suppression of humping. Machined edges provided more consistent root quality and integrity compared with plasma cut welded specimens. Higher heat input (> 0.80 kJ/mm) welds provided hardness level below 325 HV. The welded joints had good Charpy toughness at ? 50 °C (> 50 J) and high tensile strength.

    关键词: Mechanical properties,Toughness,Thick steel,Hybrid welding,High strength steel,Laser welding

    更新于2025-09-23 15:21:01

  • Filler metal distribution and processing stability in laser-arc hybrid welding of thick HSLA steel

    摘要: Welds made by high power laser beam have deep and narrow geometry. Addition of filler wire by the arc source, forming the laser-arc hybrid welding (LAHW) process, is very important to obtain required mechanical properties. Distribution of molten wire throughout the entire weld depth is of concern since it tends to have low transportation ability to the root. Accurate identification of filler metal distribution is very challenging. Metal-cored wires can provide high density of non-metallic inclusions (NMIs) which are important for acicular ferrite nucleation. Accurate filler distribution can be recognized based on statistical characterization of NMIs in the weld. In the present study, it was found that the amount of filler metal decreased linearly towards the root. The filler metal tends to accumulate in the upper part of the weld and has a steep decrease at 45–55 % depth which also has wavy pattern based on longitudinal cuts. Substantial hardness variation in longitudinal direction was observed, where in the root values can reach > 300 HV. Excessive porosity was generated at 75 % depth due to unstable and turbulent melt flow based on morphology of prior austenite grains. The delicate balance of process parameters is important factor for both process stability and filler metal distribution.

    关键词: Filler metal distribution,Microstructure,Thick steel,Non-metallic inclusions,High strength steel,Mechanical properties,Laser-arc hybrid welding

    更新于2025-09-23 15:19:57

  • Prediction of Preheating Temperatures for S690QL High Strength Steel Using FEM-Simulation for High Power Laser Welding

    摘要: This study investigates a method for predicting the effect of preheating temperatures on the resulting hardness for high power laser welding of high strength steel. An FEM model is introduced containing a hardness calculation based on an existing model. Moreover, the hardness values of experimental results have been measured in order to show the performance of the model. The hardness calculation requires the chemical composition and the t8/5-time at the point of measurement. It is claimed that a calibration of the melt pool width and depth at room temperature only is enough to get reasonable results from the FEM-model for higher preheating temperatures. From the experimental result of a single experiment the width of a weld seam and the depth was deducted. In this study experiments have been done at various preheating temperatures in order to show the correlation between the model and the experimental results at various temperatures. The hardness equation provides suitable results in the verification with the measurements. The prediction of preheating temperature can be done with the resulting t8/5-time of the FEM-model. This method can decrease the amount of time and costs within a production according to testing and analyzing a matrix of process parameters. Moreover it is concluded that this methodology might be used for single item production.

    关键词: Deep penetration laser welding,FEM-welding simulation,High strength steel,Preheating,Predicting hardness

    更新于2025-09-19 17:13:59

  • Influence of Powder Condition on Surface Properties of Cold-Resistant High-Strength Steel Produced by Direct Laser Deposition Method

    摘要: Direct laser deposition (DLD) allows creating parts of complex shapes and configurations in a single process step without using of additional equipment. Such technologies are required in the shipbuilding industry, aircrafts, gas turbines, mechanical engineering etc., where it is necessary to manufacture large-sized and complex products that have a long technological cycle for production using classical technologies. DLD makes it possible to produce parts of various alloys with mechanical characteristics at the level of the wrought alloys. The publication is described direct laser deposition of high-strength cold-resistant steels results. Besides mechanical properties of material, the exploitation properties of the structure are also significantly important. Results of corrosion, abrasive-corrosion and tribotechnical tests are shown.

    关键词: corrosion resistance,high-strength steel,abrasive-corrosion resistance,Direct laser deposition,cold-resistant steel,initial powder condition,wear resistance

    更新于2025-09-16 10:30:52

  • Parameter Optimization for Laser Welding of High Strength Dissimilar Materials

    摘要: Dissimilar joining of high strength tensile steels are joined using laser beam welding. The selection of the welding conditions for joining of dissimilar materials is highly required to satisfy the quality of the joints. In the present investigation, optimization technique were used to determine the optimal welding conditions. Initially welding conditions were optimized for weld geometry and formation of different zones in the weldment. The metallurgical and mechanical properties of the welds are greatly influenced by the geometry of the welds. The surface response methodology design is carried out for the experimental design by the development of regression equations. Analysis of variance (ANOVA) was used to check the validity of the model. The output of the welding conditions were compared with the predicted values to identify the accuracy of the model. The obtained results from response surface methodology were compared with the experimental results and validated.

    关键词: Optimization,Fusion zone,Mechanical properties,Laser welding,Welding parameters,High strength steel,Bead geometry

    更新于2025-09-16 10:30:52

  • Effect of Laser Beam Welding on the Cyclic Material Behavior of the Press-hardened Martensitic Chromium Steel X46Cr13

    摘要: For the application of high-strength materials in welded joints, a point of principle is how the strength of the sheet metal is affected by cyclic loading and by welding. For the investigation of the cyclic material behavior of the press-hardened martensitic chromium steel X46Cr13, strain-controlled fatigue tests were performed and evaluated. The aim of compensating the limitations in the weldability of this press-hardened material is achieved by a reduced heat input of the laser beam welding and a defined heat treatment. The effect of laser beam welding on the fatigue properties is shown by the cyclic behavior of butt joints. The cyclic material behavior is the basis of strain-based fatigue assessment approaches. Both cyclic stress-strain curves and strain-life curves are used for the fatigue life estimation. No clear difference between the press-hardened base material and butt joints has been found in the cyclic stress-strain curves. Transient effects are found by comparison of hysteresis loops of the initial loading, at the cyclically stabilized state and at crack initiation. Cyclic hardening is concluded from the initial loading and the cyclically stabilized state. By comparison of strain-life curves, a difference in the number of cycles to crack initiation between the base material and butt joints is found. Cycles to crack initiation of butt joints tested under strain control result in over 50 % of the base material’s fatigue strength at 1·106 cycles to failure.

    关键词: high manganese TWIP steels,high-strength steel,MnCr steels,butt joint,laser beam welding,Martensitic stainless steel,integral fatigue life estimation method,press-hardening,cyclic material behavior

    更新于2025-09-12 10:27:22