修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

10 条数据
?? 中文(中国)
  • Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics

    摘要: The generation of electrical energy depending on renewable sources is rapidly growing and gaining serious attention due to its green sustainability. With fewer adverse impacts on the environment, the sun is considered as a nearly infinite source of renewable energy in the production of electrical energy using photovoltaic devices. On the other end, organic photovoltaic (OPV) is the class of solar cells that offers several advantages such as mechanical flexibility, solution processability, environmental friendliness, and being lightweight. In this research, we demonstrate the manufacturing route for printed OPV device arrays based on conventional architecture and using inkjet printing technology over an industrial platform. Inkjet technology is presently considered to be one of the most matured digital manufacturing technologies because it offers inherent additive nature and last stage customization flexibility (if the main goal is to obtain custom design devices). In this research paper, commercially available electronically functional inks were carefully selected and then implemented to show the importance of compatibility between OPV material stacks and the device architecture. One of the main outcomes of this work is that the manufacturing of the OPV devices was accomplished using inkjet technology in massive numbers ranging up to 1500 containing different device sizes, all of which were deposited on a flexible polymeric film and under normal atmospheric conditions. In this investigation, it was found that with a set of correct functional materials and architecture, a manufacturing yield of more than 85% could be accomplished, which would reflect high manufacturing repeatability, deposition accuracy, and processability of the inkjet technology.

    关键词: inkjet technology,flexible electronics,organic photovoltaics,Indium Tin Oxide (ITO) free solar cells

    更新于2025-11-14 17:28:48

  • Nanostructured Transparent Conductive Electrodes for Applications in Harsh Environments Fabricated via Nanosecond Laser‐Induced Periodic Surface Structures (LIPSS) in Indium–Tin Oxide Films on Glass

    摘要: A self-organization phenomenon named laser-induced periodic surface structures (LIPSS) is utilized for pattern formation in indium–tin oxide (ITO) transparent conductive films coated on borosilicate glass. Stripe patterns with periodicities down to 175 nm are created by scanning the focused beam (30 μm spot diameter 1 e?2) of a nanosecond pulsed laser operating at 532 nm wavelength over ITO films. Highly ordered ITO-LIPSS are generated at a pulse duration of 6 ns, pulse frequencies between 100 and 200 kHz, pulse energies around 20 μJ, and laser spot scan speeds in the range of 50–80 mm s?1. Resulting nanopatterns are electrically conductive and feature improved optical transparency as well as stability against strong acids such as hydrochloric acid, sulfuric acid, and even aqua regia. The formation of mixed phases between ITO and silicon is considered to be the origin for the chemical robustness of laser patterned transparent conductive electrodes.

    关键词: laser-induced periodic surface structures (LIPSS),laser patterning,self-organization,indium–tin oxide (ITO),transparent conductive films (TCF)

    更新于2025-10-22 19:40:53

  • Indium tin oxide modified with dendrimer-encapsulated Pt nanoparticles as efficient p-aminophenol redox cycling platforms

    摘要: In this work, we studied indium tin oxides (ITOs) modified with dendrimer-encapsulated Pt nanoparticles (Pt DENs) to develop efficient p-aminophenol (p-AP) redox cycling platforms. The ITO surfaces were modified via electro-oxidative grafting of the terminal amine groups of the dendrimers encapsulating catalytic Pt nanoparticles (i.e., Pt DENs). Compared to conventional ITO surfaces, the Pt DEN-modified ITOs showed highly enhanced electrochemical oxidation current of p-AP even at low potentials with no significant background oxidation current due to the catalytic activity of Pt nanoparticles, leading to high signal-to-background ratio for sensitive p-AP redox cycling. The enhanced p-AP redox cycling on the Pt DEN-modified ITOs led to ~17.8 times higher sensitivity of the p-AP redox cycling than that obtained with conventional ITOs. In addition, the Pt DEN-modified ITOs were found to be suitable as platforms for the immobilization of oligonucleotides due to the globular structure of dendrimers, which have a high surface-to-volume ratio and multiple terminal functional groups, grafted on ITO surfaces. The DEN-modified ITOs could be further functionalized by the immobilization of single-strand DNA oligonucleotides with high surface density (i.e., (2.2 ± 0.4) × 1012 molecules/cm2), which is ~4.4-fold higher than that on the surface of conventional ITOs.

    关键词: Indium tin oxide (ITO),Amine-terminated dendrimer,p-aminophenol (p-AP) redox cycling,Dendrimer-encapsulated nanoparticle (DEN)

    更新于2025-09-23 15:22:29

  • Effect of the Interface Improved by Self-Assembled Aromatic Organic Semiconductor Molecules on Performance of OLED

    摘要: This work focuses on characterization the performance of enhanced interface of organic light emitting diode (OLED) device by Self-assembled Monolayer (SAM) technique. SAM technique is popular in order to overcome the weak bonding at the organic/inorganic interface in OLED. New generation of SAM molecules, phenyl-benzoic-acid (PBA, 4-(9H-carbazol-9-il) benzoic acid (MZ39), 4-(2,5-di-2thienyl-1H-pyrrol-1-il) benzoic acid (MZ25) were coated on between Indium Tin Oxide (ITO). The two con?guration of ITO/SAM/TPD/Al and ITO/TPD/Al diode were fabricated as hole-only device to show the contribution of SAM layer on the hole mobility calculated by Space Charge Limited Current (SCLC) technique. The optical characterization of OLED devices with con?guration ITO/TPD/Alq3/Al and ITO/SAM/TPD/Alq3/Al was performed to see the effect of aromatic SAM molecules on the luminance and quantum ef?ciency. Especially, the SAM modi?ed OLED has a maximum luminance of 397 cd m?2. All devices containing SAM layer showed better performance than reference one.

    关键词: Indium Tin Oxide (ITO),quantum efficiency,OLED,luminance,Space Charge Limited Current (SCLC),Self-assembled Monolayer (SAM)

    更新于2025-09-23 15:21:01

  • Electrochemical Immunosensor for Human IgE Using Ferrocene Self-Assembled Monolayers Modified ITO Electrode

    摘要: The immunoglobulin E (IgE) level in serum is an important factor in the examination of allergy. Ferrocene (Fc)-modified self-assembled monolayers (SAMs) were placed on an indium tin oxide (ITO) electrode as a sensing layer for the detection of human IgE. The Fc moiety in the SAMs facilitated the electron transfer through the organic SAMs layer and electrocatalytic signal amplification. The electrochemical measurement was accomplished after the sandwich type immobilization of the receptor antibody, target human IgE, and enzyme conjugated secondary antibody. The enzyme product, p-aminophenol, was quantitatively analyzed by redox cycling via Fc. In addition, the electrochemical impedance spectroscopy (EIS) was investigated for the detection of IgE. The limit of detection (LOD), limit of quantification (LOQ), and dynamic range of the electrochemical sensor were 3 IU/mL, 10 IU/mL, and from 10 IU/mL to 100 IU/mL, respectively.

    关键词: electrocatalytic reaction,indium tin oxide (ITO),human immunoglobulin E,electrochemical impedance spectroscopy,ferrocene

    更新于2025-09-23 15:19:57

  • Influence of Silicon Layers on the Growth of ITO and AZO in Silicon Heterojunction Solar Cells

    摘要: In this article, we report on the properties of indium tin oxide (ITO) deposited on thin-film silicon layers designed for the application as carrier selective contacts for silicon heterojunction (SHJ) solar cells. We find that ITO deposited on hydrogenated nanocrystalline silicon (nc-Si:H) layers presents a significant drop on electron mobility μe in comparison to layers deposited on hydrogenated amorphous silicon films (a-Si:H). The nc-Si:H layers are not only found to exhibit a larger crystallinity than a-Si:H, but are also characterized by a considerably increased surface rms roughness. As we can see from transmission electron microscopy (TEM), this promotes the growth of smaller and fractured features in the initial stages of ITO growth. Furthermore, secondary ion mass spectrometry profiles show different penetration depths of hydrogen from the thin film silicon layers into the ITO, which might both influence ITO and device passivation properties. Comparing ITO to aluminum doped zinc oxide (AZO), we find that AZO can actually exhibit superior properties on nc-Si:H layers. We assess the impact of the modified ITO Rsh on the series resistance Rs of SHJ solar cells with >23% efficiency for optimized devices. This behavior should be considered when designing solar cells with amorphous or nanocrystalline layers as carrier selective contacts.

    关键词: secondary ion mass spectrometry (SIMS),indium tin oxide (ITO),series resistance,Aluminum doped zinc oxide (AZO),transparent conductive oxide (TCO),transmission electron microscopy (TEM),silicon heterojunction (SHJ)

    更新于2025-09-16 10:30:52

  • Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate

    摘要: Muscovite mica is expected to show great potential in flexible optoelectronics due to its superb temperature tolerance, high transmittance, chemical stability, and mechanical durability. This flexible substrate produces sputtered transparent conducting electrodes (TCEs) with excellent film quality with high transmittance and conductivity. In this study, a designed composite TCE consisting of aluminum-doped zinc oxide (AZO) and indium tin oxide (ITO) is proposed to simultaneously maximize flexibility and conductivity. Blue-, green-, and red-emitting flexible organic light-emitting diodes (FOLEDs) using composite TCEs on mica exhibited satisfactory performance with maximum respective electroluminescence efficiencies of 18.1% (38.7 cd/A), 18.7% (66.2 cd/A), and 13.3% (22.2 cd/A). Furthermore, the green-emitting FOLEDs were modified to construct tandem FOLEDs, giving a higher peak efficiency of 27.9% (93.3 cd/A) and saturated green emission. These results can serve as a useful reference for future work on composite TCEs on mica for FOLEDs in display and lighting applications.

    关键词: Organic light-emitting diodes (OLEDs),Flexible,Tandem,Indium tin oxide (ITO),Muscovite mica,Aluminum-doped zinc oxide (AZO)

    更新于2025-09-16 10:30:52

  • A Lateral MOS-Capacitor Enabled ITO Mach-Zehnder Modulator for Beam Steering

    摘要: Here, we experimentally demonstrate an Indium Tin Oxide (ITO) Mach-Zehnder interferometer heterogeneously integrated in silicon photonics. The phase shifter section is realized in a novel lateral MOS configuration, which, due to favorable electrostatic overlap, leads to efficient modulation (VπL = 63 V.μm). This is achieved by (i) selecting a strong index changing material (ITO) and (ii) improving the field-overlap as verified by the electrostatic field lines. Furthermore, we show that this platform serves as a building block in an end-fire silicon photonics optical phased array (OPA) with a half-wavelength pitch within the waveguides with anticipated performance, including narrow main beam lobe (<3°) and >10 dB suppression of the side lobes, while electrostatically steering the emission profile up to ±80°, and if further engineered, can lead not only towards nanosecond-fast beam steering capabilities in LiDAR systems but also in holographic display, free-space optical communications, and optical switches.

    关键词: Electro-optic Modulator,Indium Tin Oxide (ITO),Phased Arrays,LiDAR,Mach Zehnder,Beam Steering

    更新于2025-09-16 10:30:52

  • A Novel Transparent pH Sensor Based on a Nanostructured ITO Electrode Coated with [3,3′-Co(1,2-C2B9H11)2]-Doped Poly(pyrrole)

    摘要: A novel transparent and nanostructured ion-sensitive electrode based on indium tin oxide (ITO) coated with cobaltbis(dicarbollide)-doped poly(pyrrole) (PPy) is presented in this work. This metallacarborane-doped PPy was used as conducting polymer due to its high stability and chemical resistance. The ion-sensitive electrode was coupled to a miniaturized and low-cost potentiostat, in a final autonomous kit for potentiometric determination of pH. Qualitative calibration of the system revealed Nernstian behavior, resulting promising for novel point-of-care biomedical applications.

    关键词: indium tin oxide (ITO),intrinsically conducting polymer (ICP),poly(pyrrole) (PPy),pH sensor,potentiometry,potentiometric sensor,boron compounds,nanoscience,metallacarboranes

    更新于2025-09-10 09:29:36

  • Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film

    摘要: In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO) thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10?4 ?/cm), carrier concentration (4.1 × 1021 cm?3), carrier mobility (10 cm2/Vs), and mean visible-light transmittance (90%) at wavelengths of 400–800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>1021 cm?3) with a high figure of merit (81.1 × 10?3 ??1) demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.

    关键词: indium tin oxide (ITO),transparent conducting oxide (TCO),magnetron sputtering,oxide-related compound

    更新于2025-09-09 09:28:46