- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells
摘要: Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl ester (PCBM) and a metal electrode in order to reduce the interface loss due to charge recombination and device degradation, and also investigate the dependence of device performance on the thickness and morphology of the PCBM and PCBM/ZnO electron transport bilayer. After achieving optimized PCBM and ZnO thickness, the PCBM/ZnO bilayer-based devices reached an average power conversion efficiency of 15.63% (Max. 16.39%) with an open circuit voltage of 1.05 V, short circuit current density of 18.69 mA cm-2, and fill factor of 79.95%. In addition, hysteresis behavior and atmospheric stability are significantly improved by the incorporation of a PCBM/ZnO bilayer. Therefore, the implementation of a PCBM/ZnO electron transport bilayer is a promising approach toward achieving a high-efficiency PSC with stable power output (low J-V hysteresis) and durability.
关键词: ZnO nanoparticles,interfacial engineering,stable perovskite solar cells,interface loss,high-efficiency perovskite solar cells,electron transport bilayer
更新于2025-11-19 16:46:39
-
An Experimental and Theoretical Study into Interface Structure and Band Alignment of the Cu2Zn1-xCdxSnS4 Heterointerface for Photovoltaic Applications
摘要: To improve the constraints of kesterite Cu2ZnSnS4 (CZTS) solar cell, such as undesirable band alignment at p?n interfaces, bandgap tuning, and fast carrier recombination, cadmium (Cd) is introduced into CZTS nanocrystals forming Cu2Zn1-xCdxSnS4 through cost-effective solution-based method without post-annealing or sulfurization treatments. A synergetic experimental-theoretical approach was employed to characterize and assess the optoelectronic properties of Cu2Zn1-xCdxSnS4 materials. Tunable direct band gap energy ranging from 1.51 eV to 1.03 eV with high absorption coefficient was demonstrated for the Cu2Zn1-xCdxSnS4 nanocrystals with changing Zn/Cd ratio. Such bandgap engineering in Cu2Zn1-xCdxSnS4 helps in effective carrier separation at interface. Ultrafast spectroscopy reveals a longer lifetime and efficient separation photo-excited charge carriers in Cu2CdSnS4 (CCTS) nanocrystals compared to that of CZTS. We found that there exists a type-II staggered band alignment at the CZTS (CCTS)/CdS interface, from cyclic voltammetric (CV) measurements, corroborated by first-principles density functional theory (DFT) calculations, predicting smaller conduction band offset (CBO) at the CCTS/CdS interface as compared to the CZTS/CdS interface. These results point towards efficient separation of photoexcited carriers across the p?n junction in the ultrafast time scale and highlight a route to improve device performances.
关键词: grain boundary,photovoltaic,cation substitution,Earth-abundant material,interfacial engineering,band offset,ultrafast carrier dynamics
更新于2025-09-23 15:21:01
-
Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr2 Perovskite Solar Cells with Photovoltage Exceeding 1.33??V
摘要: A novel interface design is proposed for carbon-based, all-inorganic CsPbIBr2 perovskite solar cells (PSCs) by introducing interfacial voids between TiO2 electron transport layer and CsPbIBr2 absorber. Compared with the general interfacial engineering strategies, this design exempts any extra modification layer in final PSC. More importantly, the interfacial voids produced by thermal decomposition of 2-phenylethylammonium iodide trigger three beneficial effects. First, they promote the light scattering in CsPbIBr2 film and thereby boost absorption ability of the resulting CsPbIBr2 PSCs. Second, they suppress recombination of charge carriers and thus reduce dark saturation current density (J0) of the PSCs. Third, interfacial voids enlarge built-in potential (Vbi) of the PSCs, awarding increased driving force for dissociating photo-generated charge carriers. Consequently, the PSC yields the optimized efficiency of 10.20% coupled with an open-circuit voltage (Voc) of 1.338 V. The Voc achieved herein represents the best value among CsPbIBr2 PSCs reported earlier. Meanwhile, the non-encapsulated PSCs exhibit an excellent stability against light, thermal, and humidity stresses, since it remains ~ 97% or ~ 94% of its initial efficiency after being heated at 85 °C for 12 h or stored in ambient atmosphere with relative humidity of 30–40% for 60 days, respectively.
关键词: Photovoltage,Stability,Interfacial engineering,CsPbIBr2,All-inorganic perovskite solar cells
更新于2025-09-23 15:21:01
-
Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells
摘要: Fullerene derivatives especially [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with strong electron-accepting abilities have been commonly implemented as indispensable cathode buffer layers (CBLs) of inverted (p-i-n) planar perovskite solar cells (iPSCs) to facilitate electron transport. However, only a single fullerene CBL is typically used in iPSC devices, resulting in interfacial energy offset between fullerene CBL and metal cathode and consequently insufficient electron transport. Herein, we synthesized a novel bis-dimethylamino-functionalized fullerene derivative (abbreviated as PCBDMAM) and applied it as an auxiliary fullerene interlayer atop of PCBM to form a PCBM/PCBDMAM double fullerene CBL, leading to dramatic enhancement of both efficiency and ambient stability of iPSC devices. Incorporation of PCBDMAM interlayer facilitates the formation of interfacial dipole layer between PCBM and Ag cathode, resulting in decrease of the work function of the Ag cathode. As a result, the CH3NH3PbI3 (MAPbI3) iPSC devices based on PCBM/PCBDMAM double fullerene CBL exhibit the highest power conversion efficiency (PCE) of 18.11%, which is drastically higher than that of the control device based on single PCBM CBL (14.21%) and represents the highest value reported for double fullerene CBL-based iPSC devices. Moreover, due to the higher hydrophobicity of PCBDMAM than PCBM, iPSC devices based on PCBM/PCBDMAM double fullerene CBL shows an enhanced ambient stability, retaining 67% of the initial PCE after storage 1440 h exposure under the ambient atmosphere without any encapsulation, whereas only 43% retaining was achieved for the control device based on single PCBM CBL.
关键词: Cathode buffer layer,Perovskite solar cells,Work function,Interfacial engineering,Fullerene derivative
更新于2025-09-23 15:21:01
-
Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency
摘要: A major limit for planar perovskite solar cells is the trap-mediated hysteresis and instability, due to the defective metal oxide interface with the perovskite layer. Passivation engineering with fullerenes has been identified as an effective approach to modify this interface. The rational design of fullerene molecules with exceptional electrical properties and versatile chemical moieties for targeted defect passivation is therefore highly demanded. In this work, novel fulleropyrrolidine (NMBF-X, X=H or Cl) monomers and dimers are synthesized and incorporated between metal oxides (i.e. TiO2, SnO2) and perovskites (i.e. MAPbI3 and (FAPbI3)x(MAPbBr3)1-x). The fullerene dimers provide superior stability and efficiency improvements compared to the corresponding monomers, with chlorinated fullerene dimers being most effective at coordinating with both metal oxides and perovskite via the chlorine terminals. The non-encapsulated planar device delivers a maximum power conversion efficiency of 22.3% without any hysteresis, while maintaining over 98% of initial efficiency after ambient storage for 1000 h, and exhibiting an order of magnitude improvement of the T80 lifetime.
关键词: stability,perovskite solar cells,fullerene dimers,interfacial engineering
更新于2025-09-23 15:19:57
-
Interfacial Engineering for Gradient Optical Fiber
摘要: Gradient functionalization is a widely applied process in materials science that involves generating gradient distribution of composition or structure to yield materials with new functions or improved properties. Here an interfacial engineering is described for construction of gradient fiber, which exhibits gradient distribution of active centers, bonding configuration, and the resultant optical response. It is shown that the interfacial diffusion of protype niobium (Nb) in the core and cladding region of the fiber can be tuned via rational control of the viscosity of melt and the subsequent thermal activation. This leads to gradient distribution of Nb species and active [NbO6]7? centers within 10–20 μm region. As a result, unique optical properties including the tunable energy transfer between active centers and special annular emission beam can be obtained. These results highlight a fundamental principle to develop novel photonic fibers and provide a great step in expanding the scope of gradient materials.
关键词: optical properties,gradient functionalizaton,glass fiber,interfacial engineering
更新于2025-09-23 15:19:57
-
Inorganic molecule-induced electron transfer complex for highly efficient organic solar cells
摘要: Interfacial engineering of electrode modification has been proved to be an effective approach for improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, compared to the advance in active layer, the study of interfacial modification is seriously lagging behind and the contribution of electrode modification to the PCE enhancement is marginalized. Herein, we synthesized a series of polynuclear metal-oxo clusters (PMCs) with gradually varied chemical composition and photoelectronic properties, by which an efficient and stable hole extraction layer was developed to enhance OSC efficiencies. The PCE of the OSC modified by PMC-4 was improved from 15.7% to 16.3% as compared to the PEDOT:PSS device. Moreover, PMC-4 can be fabricated through solution processing without any post-treatment, and the corresponding device shows improved long-term stability. As revealed for the first time, the strong oxidizing property of PMC can induce the formation of inorganic-organic electron transfer complex with a barrier-free interface for efficient hole extraction. Furthermore, experimental data and theoretical calculation results reveal that the molecular polarization of mixed-addenda PMCs can enhance the capacitance at the AIL/active layer interfaces. As a result, the mixed-addenda PMCs can be processed by blade-coating to make a large-area OSC of 1 cm2, and a certified PCE of 14.3% was achieved.
关键词: power conversion efficiency,hole extraction layer,polynuclear metal-oxo clusters,organic solar cells,interfacial engineering
更新于2025-09-23 15:19:57
-
High Efficiency Perovskite Solar Cells: Materials and Devices Engineering
摘要: Since the first report on 9.7% efficient solid-state perovskite solar cell (PSC) in 2012, perovskite photovoltaics received tremendous attentions. Efforts to increase power conversion efficiency (PCE) have been continuously made. As a result, a record PCE of 25.2% was certified in 2019, which surpassed those achieved from the conventional solar cells based on CIGS and CdTe. The superb photovoltaic performance of PSC is related to the defect-tolerant property, the long carrier lifetime, the long diffusion length of photo-generated carriers, and the high absorption coefficient. In this review, materials and devices engineering are described for achieving stability and higher PCE in PSCs. From the practical point of view, key technologies for materials, coating, and device fabrication are described, which is expected to be helpful to achieve high efficiency PSCs. Moreover, interfacial engineering methodologies toward hysteresis-less and stable PSCs are also presented to give insight into better understanding ion migration and recombination in PSCs.
关键词: Solid-state,Perovskite solar cell,High efficiency,Hysteresis-less,Interfacial engineering,Stability,Coating
更新于2025-09-12 10:27:22
-
High efficiency dye-sensitized solar cells with <i>V</i> <sub/>OC</sub> – <i>J</i> <sub/>SC</sub> trade off eradication by interfacial engineering of the photoanode|electrolyte interface
摘要: Interfacial modification of the photoanode|electrolyte interface using oleic acid (OA) is thoroughly investigated in this present study. The overall photoconversion efficiency of 11.8% was achieved under the illumination of 100 mW cm?2 with an optical filter of AM 1.5 G. OA molecules were meant to be adsorbed on to the vacant areas of the TiO2 and the OA moieties leached out the aggregated C106 dye molecules from the TiO2 surface. There was a strong spectral overlap between the absorption spectrum of donor (OA) and the emission spectrum of acceptor (C106), leading to effective F?rster Resonance Energy Transfer (FRET) between OA and C106 and suggested an excellent opportunity to improve the photovoltaic performances of DSSCs. UV-vis DRS and UPS analysis revealed that OA molecules created new surface (mid-gap energy) states (SS) in TiO2 and these SS played a major role in the electron transport kinetics. Mott–Schottky analysis of DSSCs under dark conditions was carried out to find the shift in the flat band potential of TiO2 upon OA modification. Surprisingly, no trade off between VOC and JSC was observed after interfacial modification with OA. The dynamics of charge recombination and electron transport at the photoanode|electrolyte interface were studied in detail using electrochemical impedance spectroscopy.
关键词: interfacial engineering,F?rster Resonance Energy Transfer,oleic acid,photoconversion efficiency,dye-sensitized solar cells
更新于2025-09-12 10:27:22
-
Control of Resistive Switching Voltage by Nanoparticle-Decorated Wrinkle Interface
摘要: Control of resistive switching voltage in nonvolatile memory devices plays a critical role in building commercial ultra-low power data storage technology. Here, an effective strategy to control the resistive switching voltage in polymer memory devices by interfacial engineering is presented. By creating a wrinkled surface in reduced graphene oxide (rGO) film as the conductive electrode, an electrical bistable phenomenon is observed in polymer diode with this rGO electrode, with the feature of a write-once-read-many-times nonvolatile memory effect. By further employing silver nanoparticles and controlling their density at the wrinkled rGO electrode/polymer interface, the optimized device exhibits a high performance nonvolatile memory effect with an ultra-low switching voltage of 0.9 V, high ON/OFF ratio of 1000, and desirable long retention time over 104 s. To the best knowledge, the value of switching voltage is much lower than that of previous related polymer memory devices. This study paves a new way toward ultra-low power manufacturing of non-volatile polymer memory devices.
关键词: interfacial engineering,resistive switching voltage,wrinkle surfaces,nanoparticle decoration,polymer memory devices
更新于2025-09-10 09:29:36