修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • [IEEE NAECON 2019 - IEEE National Aerospace and Electronics Conference - Dayton, OH, USA (2019.7.15-2019.7.19)] 2019 IEEE National Aerospace and Electronics Conference (NAECON) - In Situ Process Monitoring for Laser-Powder Bed Fusion using Convolutional Neural Networks and Infrared Tomography

    摘要: Additive Manufacturing (AM) is a growing field for various industries of avionics, biomedical, automotive and manufacturing. The onset of Laser Powder Bed Fusion (LPBF) technologies for metal printing has shown exceptional growth in the past 15 years. Quality of parts for LPBF is a concern for the industry, as many parts produced are high risk, such as biomedical implants. To address these needs, a LPBF machine was designed with in-situ sensors to monitor the build process. Image processing and machine learning algorithms provide an efficient means to take bulk data and assess part quality, validating specific internal geometries and build defects. This research will analyze infrared (IR) images from a Selective Laser Melting (SLM) machine using a Computer Aided Design (CAD) designed part, featuring specific geometries (squares, circles, and triangles) of varying sizes (0.75-3.5 mm) on multiple layers for feature detection. Applying image processing to denoise, then Principal Component Analysis (PCA) for further denoising and applying Convolution Neural Networks (CNN) to identify the features and identifying a class which does not belong to a dataset, where a dataset are created from CAD images. Through this automated process, 300 geometric elements detected, classified, and validated against the build file through CNN. In addition, several build anomalies were detected and saved for end-user inspection.

    关键词: Laser Powder Bed Fusion (LPBF),Principal Component Analysis (PCA),infrared image (IR),Convolution Neural Networks (CNN),Additive Manufacturing (AM),Computer Aided Design (CAD)

    更新于2025-09-23 15:21:01

  • Increasing the productivity of Laser Powder Bed Fusion: influence of the hull-bulk strategy on part quality, microstructure and mechanical performance of Ti-6Al-4V

    摘要: To increase the productivity of Laser Powder Bed Fusion (LPBF), a hull-bulk strategy can be implemented. This approach consists in using a high layer thickness in the core of the part, hence reducing the build time, and a low layer thickness in the skin, to maintain a high accuracy and good surface finish. The present study investigated to what extent this strategy affected the surface roughness, relative density, microstructure and mechanical properties of Ti-6Al-4V parts. Ti-6Al-4V specimens were built using two distinct sets of process parameters, one optimized for a 90 μm-layer thickness in the bulk and the other for a 30 μm-layer thickness in the hull. In addition to surface roughness and relative density measurements, a thorough microstructure analysis was done using both optical microscopy and SEM. Additionally, EBSD measurements and numerical reconstruction of the parent β grains were performed to evaluate the mesostructure and texture evolution from hull to bulk. Microhardness measurements and tensile tests were done to assess the effect of the hull-bulk strategy on the mechanical properties. This analysis was completed on both as-built and stress-relieved specimens. The present study demonstrated the possibility of using the hull-bulk strategy to build high-quality Ti-6Al-4V parts, without impacting their tensile properties, hence increasing the productivity of the process by a geometry-dependent factor, typically ranging between 25% and 100%.

    关键词: Ti-6Al-4V,tensile properties,LPBF,graded microstructure,productivity

    更新于2025-09-23 15:19:57

  • Laser powder bed fusion of Nda??Fea??B permanent magnets

    摘要: In this work, we use laser powder bed fusion (LPBF) to produce Nd–Fe–B magnets. A suitable process window is developed, which allows to fabricate isotropic samples with outstanding magnetic performance. The sample quality is mainly defined by the energy input during LPBF and sintering or delamination occurs, if the process parameter are improperly adjusted. Magnetic and structural properties become better as energy input increases, until the material-specific limit for process-ability has been reached. Magnets with coercivity of 886 kA/m (μ0Hc = 1.1 T) and maximum energy product of 63 kJ/m3 can be produced from Nd-lean commercial powder without any post treatment. Thereby, our samples represent the new benchmark for permanent magnets produced by additive manufacturing. On the example of coercivity, the impact of laser power, scan velocity and hatch spacing is discussed. It is shown that coercivity can be sufficiently well described by a simple phenomenological model.

    关键词: Permanent magnets,Functional materials,Magnetic materials,Nd–Fe–B,Coercivity,Laser powder bed fusion (LPBF)

    更新于2025-09-23 15:19:57

  • Material Reuse in Laser Powder Bed Fusion: Side Effects of the Lasera??Metal Powder Interaction

    摘要: Metal additive manufacturing is changing the way in which engineers and designers model the production of three-dimensional (3D) objects, with rapid growth seen in recent years. Laser powder bed fusion (LPBF) is the most used metal additive manufacturing technique, and it is based on the efficient interaction between a high-energy laser and a metal powder feedstock. To make LPBF more cost-efficient and environmentally friendly, it is of paramount importance to recycle (reuse) the unfused powder from a build job. However, since the laser–powder interaction involves complex physics phenomena and generates by-products which might affect the integrity of the feedstock and the final build part, a better understanding of the overall process should be attained. The present review paper is focused on the clarification of the interaction between laser and metal powder, with a strong focus on its side effects.

    关键词: metal powder,condensate,spatter,LPBF,laser radiation

    更新于2025-09-19 17:13:59

  • Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems

    摘要: Laser path, scan speed, and laser power are critical machine parameters for determining the quality of the output of laser-based powder bed fusion (LPBF) processes. A jerk-limited control strategy is implemented for laser path planning on a LPBF additive manufacturing (AM) testbed. The actual and commanded laser paths/velocities are found to be in better agreement with each other compared to conventional controls. The new controller enabled implementation of advanced laser power control strategies synchronized with laser position and velocity by embedding all into a modified G-code (referred as AM G-code). An interpreter is developed to utilize sophisticated LPBF laser control commands.

    关键词: Jerk-limited Control,Scan Strategies,Laser Powder Bed Fusion Additive Manufacturing (LPBF AM),AM G-code

    更新于2025-09-12 10:27:22

  • Finite element prediction and validation of residual stress profiles in 316L samples manufactured by laser powder bed fusion

    摘要: Laser powder bed fusion (LPBF) processes continue to grow in popularity and much progress has been made in recent years. However, due to the extreme thermal gradients present, significant residual stresses are inevitable and can be detrimental during component service. Critical to mitigating these stresses effectively is the ability to model the thermo-mechanical process accurately and efficiently. A simplified FE modelling methodology has been developed and applied to a cylindrical component built in both the horizontal and vertical orientations. The resulting distortion of the parts following a slitting process was compared with those predicted by the model and good agreement to within 5% was found. The final stress fields in the components were predicted by the model and then examined to assess the principal stresses driving the distortion and the causes of difference in results between the two build orientations.

    关键词: LPBF,residual stress,finite element modelling,Laser powder bed fusion,distortion

    更新于2025-09-12 10:27:22