修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • [ASME ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, California, USA (Monday 27 August 2018)] ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - Microstructural Evolution in SAC305 and SAC-Bi Solders Subjected to Mechanical Cycling

    摘要: Fatigue failure of solder joints is one of the most common methods by which electronic packages fail. Electronic assemblies usually must cope with a temperature varying environment. Due to the mismatches in coefficients of thermal expansion (CTEs) of the various assembly materials, the solder joints are subjected to cyclic thermal-mechanical loading during temperature cycling. The main focus of this work is to investigate the changes in microstructure that occur in SAC305 and SAC+Bi lead free solders subjected to mechanical cycling. In this paper, we report on results for the SAC+Bi solder commonly known as SAC_Q or CYCLOMAX. Uniaxial solder specimens were prepared in glass tubes, and the outside surfaces were polished. A nanoindenter was then used to mark fixed regions on the samples for subsequent microscopy evaluation. The samples were subjected to mechanical cycling, and the microstructures of the selected fixed regions were recorded after various durations of cycling using Scanning Electron Microscopy (SEM). Using the recorded images, it was observed that the cycling induced damage consisted primarily of small intergranular cracks forming along the subgrain boundaries within dendrites. These cracks continued to grow as the cycling continued, resulting in a weakening of the dendrite structure, and eventually to the formation of large transgranular cracks. The distribution and size of the intermetallic particles in the inter-dendritic regions were observed to remain essentially unchanged.

    关键词: Bismuth,Microstructure,SAC Alloy,Hysteresis,Evolution,Lead Free Solder,Cyclic Stress-Strain Curve

    更新于2025-09-23 15:22:29

  • [ASME ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, California, USA (Monday 27 August 2018)] ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - The Effects of Temperature, Strain Rate, and Aging on the Poisson’s Ratio of SAC Lead Free Solders

    摘要: In this study, we have conducted a combined numerical and experimental study on the Poisson’s ratio of SAC lead free solders. The Poisson’s ratio (PR) is one of the basic mechanical properties used in many material constitutive models. Although often not measured, it is important property in many finite element method (FEM) calculations. The value of the Poisson’s ratio of SAC lead free solders is relatively unexplored compared to other material properties, and for FEA simulations it is typically assumed to be ? = 0.3. In the current work, we have shown the effects of the chosen value of the solder joint Poisson’s ratio on the finite element results for BGA components subjected to thermal cycling. In the finite element models, the reliability predictions were based on the Morrow-Darveaux energy-based fatigue model. Several sizes (5, 10, 15 mm) of PBGA components with SAC305 solder joints with 0.4 and 0.8 mm spacing were modeled. The packages were subjected to a time dependent cyclic temperature distribution from -40 to 125 oC. The package assemblies were assumed to be in a stress-free state at 25 oC (room temperature), with no residual stresses induced in the manufacturing process. The simulation results have demonstrated that for specified range of Poisson’s ratio values of 0.15 < ??< 0.40, the solder Plastic Work varied over 20% and the Predicted Reliability Varied over 50%. To determine the actual Poisson’s ratio experimentally, uniaxial tensile stress-strain tests were carried out on SAC305 (96.5Sn3.0Ag0.5Cu) specimens using a micro tension/torsion testing machine with two strain rates (0.0001, and 0.00001 (sec-1)), four testing temperatures (T = 25, 50, 75, 100 oC), and several durations of prior aging at T = 125 oC. Deformations and strains in axial and transverse directions were measured using strain gages with automatic data acquisition from LabVIEW software. The recorded transverse strain vs. axial strain data were then fit with a linear regression analysis to determine the Poisson’s ratio values. A test matrix of experiments was developed to study the effects of temperature, strain rate, alloy composition, and solidification cooling profile on the value of solder Poisson’s ratio. The Poisson’s ratio was found to increase with increasing temperature, and decrease with increasing strain rate. Using a slower solidification cooling profile led to an increase in the solder Poisson’s ratio value. Finally, the microstructural coarsening that occurs during isothermal aging lead to an increase in the Poisson’s ratio.

    关键词: FEA,Lead Free Solder,Reliability,DAQ,PBGA Packaging

    更新于2025-09-23 15:21:21

  • Effect of Different Bonding Materials on Flip-Chip LED Filament Properties

    摘要: This article researches the effect of Sn-based solder alloys on flip-chip light-emitting diode LED (FC-LED) filament properties. SEM images, shearing force, steady-state voltage, blue light luminous flux, and junction temperature were examined to demonstrate the difference between two types of FC-LED filaments welded with two solders. The microstructure surface of Sn90Sb10 filament solder joints was smoother and had fewer voids and cracks compared with that of SAC0307 filament solder joints, which indicates that the Sn90Sb10 filaments had a higher shearing force than the SAC0307 filaments; moreover, the average shearing force was beyond 200 gf (standard shearing force). The steady-state voltage and junction temperature of the Sn90Sb10 solder-welded FC-LED filament were lower, and the Sn90Sb10 filament had a relatively higher blue light luminous flux. If high reliability of the solder joints and better photoelectric properties of the filaments are required, this Sn90Sb10 solder is the best bonding material for FC-LED filament welding.

    关键词: reliability,lead-free solder,photoelectric properties,FC-LED filament

    更新于2025-09-12 10:27:22

  • High-Temperature Cycle Durability of Superplastic Al-Zn Eutectoid Solder Joints with Stress Relaxation Characteristics for SiC Power Semiconductor Devices

    摘要: We have developed a new high-temperature Al-Zn lead-free soldering process that utilizes superplasticity to realize SiC power devices with high-temperature cycle durability. The joining process consists of an Al-78wt.%Zn preparation being sandwiched by a SiC die and insulation substrate, an interfacial cleaning process at approximately 250-270oC, a heating stage to reach the solid-liquid coexisting temperature of 420-430oC, the ejection of low-melting-temperature β(Zn) from the joining area by press stress, and the transformation to a superplastic composition, i.e., Al-70 wt.% Zn at 270-310oC. Many lamellar phases that enable superplasticity can be formed in this microstructure. This solder joint composition was proven to have a better stress-relaxation effect than eutectic Al-95wt.%Zn, and the composition shows a much higher damping capability at the maximum operating temperature of SiC devices (200oC) than that of other joining candidates. The outstanding temperature cycle durability was verified in temperature cycle tests from -40oC to 300oC for 5000 cycles. This durability is due to the high-stress-relaxation effect from the superplasticity transformation realized by the lamellar structures in the Al-Zn alloy solder.

    关键词: lamellar structure,damping capability,power semiconductor,SiC,superplasticity,temperature cycle test,Al-Zn eutectoid solder,lead-free solder,stress relaxation

    更新于2025-09-09 09:28:46

  • [ASME ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, California, USA (Monday 27 August 2018)] ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - Investigation of the Effects of High Temperature Aging on the Mechanical Behavior of Lead Free Solders

    摘要: Lead free solders are renowned as interconnects in electronic packaging due to their relatively high melting point, attractive mechanical properties, thermal cycling reliability, and environment friendly chemical properties. The mechanical behavior of lead free solders is highly dependent on the operating temperature. Previous investigations on mechanical characterization of lead free solders have mainly emphasized stress-strain and creep testing at temperatures up to 125 °C. However, electronic devices, sometimes, experience harsh environment applications including well drilling, geothermal energy, automotive power electronics, and aerospace engines where solders are exposed to very high temperatures from 125-200 °C. Mechanical properties of lead free solders at elevated temperatures are limited. In this work, we have investigated the mechanical behavior SAC305 (96.5Sn-3.0Ag-0.5Cu) and SAC_Q (SAC+Bi) lead free solders at extreme high temperatures up to 200 °C. Stress-strain tests were performed on reflowed uniaxial specimens at four elevated temperatures (T = 125, 150, 175, and 200 °C). In addition, changes of the mechanical behavior of these alloys due to isothermal aging at T = 125 oC have been studied. Extreme care has been taken during specimen preparation so that the fabricated solder uniaxial test specimens accurately reflect the solder material microstructures present in actual lead free solder joints. High temperature tensile properties of the solders including initial modulus, yield stress, and ultimate tensile strength have been compared. As expected, our results show substantial degradations of the mechanical properties of lead-free solders at higher temperatures. With prior aging, these degradations become even more significant. Comparison of the results has shown that the addition of Bi to traditional SAC alloys improves their high temperature properties and significantly reduces their aging induced degradations.

    关键词: Yield Stress,Ultimate Tensile Strength,Stress-Strain Curve,SAC alloy,Modulus,Lead-Free Solder,Aging

    更新于2025-09-09 09:28:46