- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film
摘要: Ferroelectric/antiferroelectric thin/thick films with large positive or negative electrocaloric (EC) effects could be very useful in designing commercial refrigeration devices. Here, a giant negative EC effect (maximum ΔT ≈ ?42.5 K with ΔS ≈ ?29.3 J K?1 kg?1) comparable to the best positive EC effects reported so far is demonstrated for 0.5(Ba0.8Ca0.2)TiO3–0.5Bi(Mg0.5Ti0.5)O3 (BCT–BMT) lead-free relaxor ferroelectric thin films prepared on Pt(111)/TiOx/SiO2/Si substrates using a sol–gel method. An electric-field induced structural phase transition (nanoscale tetragonal and orthorhombic to rhombohedral) along the out-of-plane [111] direction plays a very key role in developing the giant negative EC effect. This breakthrough will pave the way for practical applications of next-generation refrigeration devices with high cooling efficiency in one cycle by ingeniously utilizing and combining both the giant negative and positive EC effects. Moreover, a large energy density of 51.7 J cm?3 with a high power density of 1.15 × 1010 W kg?1 at room temperature is also achieved in the thin film, indicating that it is also an attractive multifunctional material for energy storage.
关键词: lead-free,energy storage,electrocaloric effect,phase transition,thin film,relaxor ferroelectric
更新于2025-11-14 17:28:48
-
Large electric field-induced strain in ternary Bi0.5Na0.5TiO3-BaTiO3-Sr2MnSbO6 lead-free ceramics
摘要: The large electric-field-induced strain of Bi0.5Na0.5TiO3-BaTiO3 based ceramic make it a potential replacement for lead-based ferroelectrics in actuator applications. Herein, a ternary system (1-x)(Bi0.5Na0.5)0.935Ba0.065TiO3-xSr2MnSbO6 (BNBT6.5-xSMS) ceramic was fabricated using conventional solid-state reaction. It was found that the ferroelectric to relaxor phase transition temperature TF-R gradually shifted to lower temperature by increasing SMS contents. The ferroelectricity and piezoelectricity of BNBT6.5 were highly affected by trace amount of SMS doping. For composition BNBT6.5-0.003SMS, where TF-R was near room temperature, a large electric-field-induced unipolar strain of ~0.4% with high normalized strain (Smax/Emax) of 728 pm/V, which is comparable to lead-based ferroelectric/antiferroelectric ceramics, was achieved owing to the reversible electric-field-induced phase transition between a non-polar relaxor phase to a polar phase with long-range ferroelectric order.
关键词: electric-field-induced phase transition,ferroelectric,Lead-free ceramics,Bi0.5Na0.5TiO3
更新于2025-09-23 15:23:52
-
Pseudocubic-based polymorphic phase boundary structures and their effect on the piezoelectric properties of (Li,Na,K)(Nb,Sb)O3-SrZrO3 lead-free ceramics
摘要: CuO-added 0.96(LixNa0.5-xK0.5)(Nb1-ySby)O3-0.04SrZrO3 ceramics were sintered at 1020oC for 6 h. Various crystal structures were synthesized in these specimens by controlling the Li2CO3 (x) and Sb2O5 (y) contents: pseudocubic, orthorhombic-pseudocubic polymorphic phase boundary (PPB), tetragonal-pseudocubic PPB, orthorhombic-tetragonal-pseudocubic PPB, and orthorhombic-tetragonal PPB structures. The pseudocubic structure developed in these specimens was similar to the R3m rhombohedral structure instead of the Pm3m cubic structure because the specimens with a pure pseudocubic structure showed good ferroelectric and piezoelectric properties. The piezoelectric properties of the specimens were influenced by their crystal structures. The specimen with the tetragonal-pseudocubic PPB structure showed the best piezoelectric properties because this structure was similar to the tetragonal-rhombohedral morphotropic phase boundary structure developed in Pb(Zr1-xTix)O3-based ceramics. In particular, the specimen with the tetragonal-pseudocubic PPB structure corresponding to x = 0.05 and y = 0.065 showed the largest d33 and kp values of 431 pC/N and 0.43, respectively.
关键词: K)(Nb,Piezoelectric properties,Polymorphic phase boundary structure,Sb)O3-SrZrO3-based lead free piezoelectric ceramics,Pseudocubic structure,Na,(Li
更新于2025-09-23 15:23:52
-
Thermally-stable large strain in Bi(Mn0.5Ti0.5)O3 modified 0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3 ceramics
摘要: A N U S C RIP T (1-x)[0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3]-xBi(Mn0.5Ti0.5)O3 (x = 0 ~ 0.06, BNKMT100x) lead-free ferroelectric ceramics were prepared via solid state reaction method. Bi(Mn0.5Ti0.5)O3 induces a structure transition from rhombohedral-tetragonal morphotropic phases to pseudo-cubic phase. Moreover, the wide range of compositions within x = 0.03 ~ 0.055 exhibit large strain of 0.31% ~ 0.41% and electrostrictive coefficient of 0.027 ~ 0.041 m4/C2. Especially, at x = 0.04, the large strain and electrostrictive coefficient are nearly temperature-independent in the range of 25 ~ 100 °C. The impedance analysis shows the large strain and electrostrictive coefficient originate from polar nanoregions response due to the addition of Bi(Mn0.5Ti0.5)O3.
关键词: large strain,thermal stability,composition-insensitivity,lead-free,electric property
更新于2025-09-23 15:23:52
-
[IEEE 2018 7th Electronic System-Integration Technology Conference (ESTC) - Dresden, Germany (2018.9.18-2018.9.21)] 2018 7th Electronic System-Integration Technology Conference (ESTC) - Integration with Light
摘要: This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on micro-bumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.
关键词: LIFT,low temperature bonding,NIR curing,conductive adhesive,lead-free SAC solder,photonic soldering,flip-chip bonding,laser printing
更新于2025-09-23 15:23:52
-
Composite BNT-BT0.08/CoFe2O4 with core-shell nanostructure for piezoelectric and ferromagnetic applications
摘要: In this work, we report on the synthesis and characterization of BNT-BT0.08/CoFe2O4 biphasic composite with core-shell structure. This artificial core (BNT-BT0.08)/shell (CoFe2O4) heterostructure was prepared by sol-gel method and the resulting composite was characterized in term of microstructure, dielectric, piezoelectric and magnetic properties. BNT-BT0.08/CoFe2O4 sintered ceramic shows high permittivity (ε′ ≥ 30) and high dielectric losses (tan δ ≥ 10) in the low frequency range (ν ≤ 104 Hz), remnant polarization (Pr) of ~7.7 μC/cm2 and, remanent magnetization (Mr) of 24 emu/g at 5 K and of 14 emu/g, at room temperature. The present study reveals that the ferroelectric, piezoelectric and magnetic properties of this new architectured composite depend on the amount of each component and, can be tailored by adjusting their synthesis conditions. BNT-BT0.08/CoFe2O4 core-shell material investigated in this work provides a novel way to exploit new applications for the multifunctional composite, such as piezoelectric sensor, magnetoelectronic sensors and data storage devices.
关键词: Sol-gel processes,Composite core-shell,((Bi0.5Na0.5)0.92Ba0.08TiO3),Cobalt ferrite (CoFe2O4),Lead-free piezoelectric
更新于2025-09-23 15:23:52
-
Development of a Mixed Halide-chalcogenide Bismuth-based Perovskite MABiI <sub/>2</sub> S with Small Bandgap and Wide Absorption Range
摘要: During the last years, the lead perovskites have achieved high power conversion efficiency of 23%. However, its long-term stability and toxicity are still the crucial issues that required attention. In this study, we are the first to report on the synthesis and characterizations of a new lead-free mixed halide-chalcogenide perovskite MABiI2S (MBIS), and determined its physical and optical properties by various testing methods. The MBIS has a low bandgap of 1.52 eV, with an extended absorption onset up to over 1000 nm. Solar cells fabricated with the MBIS were inspected and device improvement were applied.
关键词: Bismuth-based perovskite,Small bandgap,Lead free perovskites
更新于2025-09-23 15:23:52
-
An Eco-friendly Flexible Piezoelectric Energy Harvester That Delivers High Output Performance is Based on Lead-Free MASnI3 Films and MASnI3-PVDF Composite Films
摘要: An environmentally-friendly lead-free methylammonium tin iodide (MASnI3) perovskite is successfully synthesized using a facile approach of an antisolvent-assisted collision technique under room ambient conditions, which results stability within 24 h under ambient room conditions. The phase transition of MASnI3 from tetragonal to cubic is first observed at ~ 30 °C. Polycrystalline MASnI3 films reveal a high dielectric constant of ~ 65 at 100 kHz, a low-leakage current density of 7 × 10-7 A cm-2 at 50 kV cm-1, well-developed P-E hysteresis loops, and a high piezoelectric coefficient (d33) of 20.8 pm V-1. The MASnI3 piezoelectric energy nanogenerator (PENG) shows an output voltage of ~ 3.8 V and an output current density of 0.35 μA cm-2. To enhance the piezoelectric output performance, the MASnI3 films are composited with an environmentally friendly PVDF polymer that had a porous structure. The PVDF-MASnI3 composite based-PENG reveals a maximum output voltage of ~ 12.0 V and current density of ~ 4.0 μA cm-2. A green light-emitting diode (LED) using the PVDF-MASnI3 PENGs is instantly lighted without need of a storage device, and long-term stability of the composite PENGs is validated for 90 days. This simple and cost-effective solution process is feasible for the fabrication of large-scale, high-performance, and environmental-friendly PENGs based on lead-free organic-inorganic perovskites to extensively implicate in medical and biomechanical applications.
关键词: Dielectric property,Lead-free MASnI3,PVDF-MASnI3 composite PENGs,Piezoelectric energy,Antisolvent-assisted collision technique
更新于2025-09-23 15:23:52
-
The sintering behavior and physical properties of Li <sub/>2</sub> CO <sub/>3</sub> -doped Bi <sub/>0.5</sub> (Na <sub/>0.8</sub> K <sub/>0.2</sub> ) <sub/>0.5</sub> TiO <sub/>3</sub> lead-free ceramics
摘要: In this study, Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) ceramics were fabricated via the conventional solid-state reaction using ultrasound waves for preliminary milling. The milling time was shortened from 20 h to 1 h with ball milling. The phase structure of BNKT investigated by X-ray diffraction showed a single perovskite phase. With increasing Li2CO3 content, the phase structure of the ceramics changed from rhombohedral to tetragonal. At a sintering temperature of 1 100 8C and Li2CO3 content of 0.4 wt.%, the best physical properties of the ceramics, such as density (q), 5.9 g cm–3; electromechanical coupling factors (kp), 0.32; (kt), 0.29; remanent polarization (Pr), 12.0 lC cm–2; dielectric constant (er), 1 191; and highest dielectric constant (emax), 5 800, were obtained.
关键词: Lead-free ceramics,Electromechanical coupling factor,BNKT,Sintering temperature,Dielectric constant
更新于2025-09-23 15:23:52
-
Uniform Cs2SnI6 Thin Films for Lead-Free and Stable Perovskite Optoelectronics via Hybrid Deposition Approaches
摘要: Herein, we synthesized uniform Cs2SnI6 films by two kinds of hybrid deposition methods by considering volume expansion involved during phase transformations. First, oblique thermal evaporation for CsI followed by SnI4 spin-coating resulted in uniform Cs2SnI6 films free of impurity phases. The rapid expansion (within 10 s of spin-coating) from CsI to Cs2SnI6 (ΔV = 106%) was accommodated by porous CsI films inhibiting crack formation. Excess SnI4 on the Cs2SnI6 after spin-coating was effectively removed by toluene washing without any damages to Cs2SnI6, and optimum deposition parameters were suggested in terms of carrier mobility. Second, annealing CsI with SnI4 vapor at 250 °C and post-annealing in the SnI4 and I2 vapor at 300 °C produced Cs2SnI6 film with complete coverage. The slow reaction (70 min for a complete conversion) provided sufficient time for complete diffusion of SnI4 into CsI without crack formation even with compact CsI. The nonradiative recombination path in Cs2SnI6 was suppressed by post-annealing in the SnI4- and I2-atmosphere, as confirmed from the enhanced photoluminescence.
关键词: Lead-free perovskite,Cs2SnI6,Electrical mobility,Oblique thermal deposition
更新于2025-09-23 15:23:52