- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
On the role of magnesium in LiF:Mg,Ti thermoluminescent dosimeter
摘要: LiF doped with Mg and Ti is the most widely used thermoluminescent (TL) dosimeter for a large variety of applications. It has been argued that the Mg dopant is the most important defect in the TL process. Besides the common F-centre defects in LiF, optical absorption measurements have suggested the presence of Mg-related absorption bands at 380 nm (3.26 eV), and 310 nm (4.0 eV) when LiF:Mg is exposed to ionizing radiation, whose origin is not yet well understood. This work presents an investigation of the role of defects induced by Mg in LiF through electronic structure calculations. The calculations show that Mg interstitials induce a local lattice distortion characterized by the displacement of two opposite fluorine atoms, adjacent to the magnesium, away from their original sites by an average distance of 0.6 ? each, while the closest Li atoms are displaced by 0.1 ?. This defect introduces electronic states in the band-gap that can trap excess electrons produced during irradiation, thus enhancing the efficiency of the detector. Holes, on the other hand, are created and trapped in orbitals of mainly Mg-3s character. Additionally, the results suggest that irradiation can simultaneously remove a Li atom nearby a Mg interstitial; substitute a Li by a Mg atom or create a Li vacancy plus a Mg substitutional, giving rise to defects within the LiF gap that are more stable thermodynamically than the Mg interstitial itself.
关键词: magnesium dopant,LiF:Mg,Ti,thermoluminescent dosimeter,electronic structure calculations,defect states
更新于2025-09-23 15:21:01
-
Degradation of OLED performance by exposure to UV irradiation
摘要: Organic light-emitting diode (OLED) displays are highly susceptible to the harsh environmental conditions found outdoors, like exposure to direct sunlight as well as UV radiation and storage temperature, resulting in a loss of luminance and lifespan, pixel shrinkage, and permanent damage and/or malfunction of the panel. Here, we fabricated top emission OLEDs (TEOLEDs) using Yb : LiF (1 : 1, 2 nm)/Ag : Mg (10 : 1, 16 nm) and Mg : LiF (1 : 1, 2 nm)/Ag : Mg (10 : 1, 16 nm) cathode units and the performances of the devices were investigated by subjecting them to UV radiation. A fabricated red TEOLED (control device), employing a standard Mg : LiF (1 : 1, 2 nm) electron injection layer (EIL) and an Ag : Mg (16 nm) cathode, showed a rapid decrease in luminance and a fast increase in driving voltage at 10 mA cm?2 over time after UV irradiation for 300 h. However, a cathode unit comprising a Yb : LiF (1 : 1, 2 nm) EIL and an Ag : Mg (10 : 1, 16 nm) cathode showed no loss of luminance or increase in driving voltage at 10 mA cm?2 over time after UV irradiation for 300 h. Therefore, we investigated the changes occurring in both cathode units due to UV irradiation using the lift-out FIB-TEM technique and EDS mapping. With UV irradiation for 300 h, Ag atoms migrated toward the center of the cathode, Mg atoms migrated toward the CPL, and no Mg atoms were observed in the EIL area. In contrast, we observed (i) no substantial migration of Ag atoms and they were located at the center of the cathode, (ii) no migration of Mg atoms toward the CPL layer, and (iii) no movement of Yb atoms after UV irradiation. Furthermore, the UV irradiated red TEOLED with an Mg : LiF (1 : 1, 2 nm) EIL showed (i) deterioration in electron injection into the emissive layer (EML) and an increase in the EIL/metal interface resistance, and (ii) a remarkable shift of the J–V curve to the higher voltage side, while almost no such changes were observed in the TEOLD with a Yb : LiF (1 : 1, 2 nm) EIL. Also, an almost identical RGB pixel emitting area was noticed in the Yb : LiF (1 : 1, 2 nm) based devices after UV irradiation for 300 h. These results suggest that Yb could become a good candidate for the cathode unit, providing better device stability against harsh environmental conditions as well as excellent electron injection properties.
关键词: electron injection,TEOLEDs,device stability,Yb : LiF,Mg : LiF,OLED,cathode unit,UV irradiation
更新于2025-09-16 10:30:52