修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Remarkable laser-driven upconverting photothermal effect of Cs3LnF6@glass nanocomposites for anti-counterfeiting

    摘要: Currently, advanced security strategies have aroused widely interest in anti-counterfeiting field to ensure the authentic items difficult to be replicated. Herein, cubic Cs3LnF6 (Ln = Y, Yb, Lu, Sc) nanocrystals embedded glasses are successfully prepared via an in-situ glass crystallization strategy. Emitting centers, such as Eu3+, Er3+, Ho3+ and Tm3+, can be incorporated into the precipitated Cs3YF6, Cs3YbF6 and Cs3LuF6 crystal lattices but remain in glass matrix rather than in Cs3ScF6 crystals for large ionic radius mismatch between lanthanide activators and Sc3+ host ions. It is demonstrated that upconverting quantum yields of all the Yb/Er: Cs3LnF6@glass samples are higher than those of well-known cubic/hexagonal Yb/Er: α/β-NaYF4@glass samples. Specifically, Yb/Er: Cs3LuF6@glass exhibits a maximal quantum yield of ~0.30%, which is superior to Yb/Er: β-NaYF4 @glass (~0.19%). Impressively, Er: Cs3YbF6@glass shows a remarkable 980 nm laser-induced photothermal effect, leading to significant alteration of upconversion emissive color from red to green with increase of incident laser power. As a prototype of the concept for practical application, a series of luminescent patterns using Er: Cs3YbF6@glass upconverting inks are constructed by a screen-printing technique and show distinct laser-power-sensitive emissive colors, being feasible for high-level anti-counterfeiting. The present work exploits a new anti-counterfeiting strategy by developing highly efficient laser-induced upconverting photothermal materials.

    关键词: Anticounterfeit,Nanocomposites,Upconversion,Lanthanide ions,Photothermal effect,Luminescent glasses

    更新于2025-10-22 19:38:57

  • Efficiency enhancement of silicon solar cells covered by GeO2-PbO glasses doped with Eu3+ and TiO2 nanoparticles

    摘要: An objective of the solar industry is to improve the efficiency of the light-electricity conversion process of photovoltaic solar cells. An alternative to achieve this purpose is to manage the solar spectrum that is absorbed by the solar cell in order to match it with the solar cell responsivity. It can be done, for example through the downconversion process, covering the solar cell with photonic materials that can convert photons of the UV region to photons with energy close to the band gap energy of the solar cell. This process can be observed, for example, through the UV excitation of transparent glasses with low phonon energy hosting luminescent ions with energy levels in the VIS region. The luminescence from these energetic levels can be improved siting the luminescent ions in places with low symmetry. In the present study the optical response to the solar spectrum of GeO2-PbO glasses containing Eu3t ions and titanium dioxide nanoparticles was explored to enhance the efficiency of polycrystalline silicon solar cells. Results revealed a maximum efficiency enhancement of 15.92% for the silicon solar cell covered with GeO2-PbO glass doped with 1% of Eu2O3 and 0.5% of TiO2 heat treated for 24 h. This efficiency enhancement was attributed to the location of the Eu3t ions in sites of low symmetry of TiO2 nanoparticles.

    关键词: TiO2 nanoparticles,Photovoltaic cells,Europium,Luminescent glasses,Down-conversion

    更新于2025-09-23 15:19:57