- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Numerical-experimental study on polishing of silicon wafer using magnetic abrasive finishing process
摘要: Silicon wafer as a brittle material is extensively used in semiconductors. The surface quality of this material significantly affects the quality and efficiency of related components. In this study, the coupled algorithm of SPH/FEM is used to simulate the surface polishing of silicon wafers with Magnetic Abrasive Finishing process. The effects of rotational speed and machining gap on percent change in surface roughness (%?Ra) and material removal (MR) are comprehensively analyzed with simulations and experiments. Furthermore, the material removal mechanism in wafers was investigated by using AFM. Our observations showed that both micro-fracture and micro-cutting mechanisms might happen and it highly depends on polishing parameters. Results of the simulations and experimental data showed that MR and %?Ra value increase with increasing rotational speed and decreasing machining gap. According to our experimental findings, maximum %?Ra and MR are 65% and 39.09 mg, respectively.
关键词: Material removal,Surface Roughness,Magnetic Abrasive Finishing,Al2O3,FEM/SPH,Silicon Wafer,Nano-finishing
更新于2025-09-19 17:15:36
-
Control of short-pulsed laser induced periodic surface structures with machining -picosecond laser nanotexturing with magnetic abrasive finishing-
摘要: An active area of research is the altering of surface functions (e.g., wettability and cell adhesion) by controlling fine surface structures such as laser-induced periodic surface structures (LIPSS). It has been found that micrometer-scale grooving (produced, for example, using ultraprecision cutting) followed by short-pulsed laser irradiation can result in efficient LIPSS coverage of a large area. However, micrometer-scale grooves can remain on the surface after short-pulsed laser irradiation. In this paper, to clarify the phenomenon and processing principle of groove-assisted short-pulsed laser irradiation, a finite-difference time-domain simulation is developed and experiments are conducted using 304 stainless steel and nickel-phosphorus (Ni–P) plating layer substrates. The use of magnetic abrasive finishing (MAF) is proposed for fabricating sub-micrometer-deep straight grooves with various peak-to-peak distances (pitch length) prior to the short-pulsed-laser irradiation. The subsequent short-pulsed-laser irradiation produces sub-micrometer-deep straight structures superimposed on the MAF-produced surface. While the pattern and depth of LIPSS are influenced by the groove depth made by MAF prior to the short-pulsed laser irradiation, the pitch length of LIPSS is dependent on the laser wavelength. This demonstrates the ability of MAF to produce grooves that guide the LIPSS and the efficacy of the developed method for fabricating fine LIPSS. The geometry of the sub-micrometer deep grooves—made prior to the short-pulsed laser irradiation—is the dominant factor in determining the pattern and geometry of the LIPSS.
关键词: Straight sub-micrometer groove,Surface roughness,Magnetic abrasive finishing,Short-pulsed laser
更新于2025-09-12 10:27:22
-
Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting
摘要: Selective laser melting (SLM) technology is playing an increasingly important role in today’s manufacturing industry. However, the surface quality of SLM samples is relatively poor and cannot be directly applied to industrial production. Therefore, this paper focuses on the post-treatment process of SLM AlSi10Mg alloy. First, the rough machining is performed by a grinding process (GP), and then, the magnetic abrasive finishing (MAF) is used for finish machining. The experiment results show that the combination of GP and MAF can effectively reduce the surface roughness and improve the surface quality of SLM AlSi10Mg alloy. The GP reduced the surface roughness to drop from 7 μm (after SLM forming) to about 0.6 μm, and the rough surface with defects such as spheroids and pits evolved into the fine surface with scratches and pores. The MAF reduced the surface roughness to a minimum of 0.155 μm, which resulted in excellent surface morphology. The surface hardness after the GP was higher, and the MAF reduced the hardness of the GP surface.
关键词: Grinding process,Hardness,AlSi10Mg alloy,Selective laser melting,Surface roughness,Magnetic abrasive finishing
更新于2025-09-11 14:15:04